当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Over 20% Efficiency in Methylammonium Lead Iodide Perovskite Solar Cells with Enhanced Stability via "in Situ Solidification" of the TiO2 Compact Layer.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-01-21 , DOI: 10.1021/acsami.9b19153
Yan Li 1 , Robert L Z Hoye 2 , Huan-Huan Gao 1 , Lihe Yan 3 , Xiaoyong Zhang 1 , Yong Zhou 1 , Judith L MacManus-Driscoll 2 , Jiantuo Gan 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-01-21 , DOI: 10.1021/acsami.9b19153
Yan Li 1 , Robert L Z Hoye 2 , Huan-Huan Gao 1 , Lihe Yan 3 , Xiaoyong Zhang 1 , Yong Zhou 1 , Judith L MacManus-Driscoll 2 , Jiantuo Gan 1
Affiliation
![]() |
In methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs), the device performance is strongly influenced by the TiO2 electron transport layer (ETL). Typically, the ETL needs to simultaneously be thin and pinhole-free to have high transmittance and avoid shunting. In this work, we develop an "in situ solidification" process following spin coating in which the titanium-based precursor (titanium(diisopropoxide) bis(2,4-pentanedionate)) is dried under vacuum to rapidly achieve continuous TiO2 layers. We refer to this as "gas-phase quenching". This results in thin (60 ± 10 nm), uniform, and pinhole-free TiO2 films. The PSCs based on the gas-phase quenched TiO2 exhibits improved power conversion efficiency, with a median value of 18.23% (champion value of 20.43%), compared to 9.03 and 14.09% for the untreated devices. Gas-phase quenching is further shown to be effective in enabling efficient charge transfer at the MAPbI3/TiO2 heterointerface. Furthermore, the stability of the gas-phase quenched devices is enhanced in ambient air as well as under 1 sun illumination. In addition, we achieve 12.1% efficiency in upscaled devices (1.1 cm2 active area).
中文翻译:
通过TiO2致密层的“原位固化”,甲基铵碘化钙钛矿型钙钛矿太阳能电池的效率提高了20%。
在甲基铵碘化铅铅(MAPbI3)钙钛矿太阳能电池(PSC)中,器件性能受到TiO2电子传输层(ETL)的强烈影响。通常,ETL需要同时薄且无针孔,以具有高透射率并避免分流。在这项工作中,我们在旋涂之后开发了一种“原位固化”工艺,在该工艺中,将钛基前体(钛(二异丙氧基)双(2,4-戊二酮酸酯))在真空下干燥,以快速获得连续的TiO2层。我们将其称为“气相淬火”。这将导致薄膜(60±10 nm),均匀且无针孔的TiO2薄膜。基于气相淬火的TiO2的PSC表现出更高的功率转换效率,与未经处理的器件的9.03和14.09%相比,中位值为18.23%(冠军值为20.43%)。进一步证明了气相淬火可有效实现MAPbI3 / TiO2异质界面上的有效电荷转移。此外,在环境空气中以及在1种阳光下,气相淬火装置的稳定性得到增强。此外,我们在高端设备(有效面积为1.1 cm2)中实现了12.1%的效率。
更新日期:2020-02-04
中文翻译:

通过TiO2致密层的“原位固化”,甲基铵碘化钙钛矿型钙钛矿太阳能电池的效率提高了20%。
在甲基铵碘化铅铅(MAPbI3)钙钛矿太阳能电池(PSC)中,器件性能受到TiO2电子传输层(ETL)的强烈影响。通常,ETL需要同时薄且无针孔,以具有高透射率并避免分流。在这项工作中,我们在旋涂之后开发了一种“原位固化”工艺,在该工艺中,将钛基前体(钛(二异丙氧基)双(2,4-戊二酮酸酯))在真空下干燥,以快速获得连续的TiO2层。我们将其称为“气相淬火”。这将导致薄膜(60±10 nm),均匀且无针孔的TiO2薄膜。基于气相淬火的TiO2的PSC表现出更高的功率转换效率,与未经处理的器件的9.03和14.09%相比,中位值为18.23%(冠军值为20.43%)。进一步证明了气相淬火可有效实现MAPbI3 / TiO2异质界面上的有效电荷转移。此外,在环境空气中以及在1种阳光下,气相淬火装置的稳定性得到增强。此外,我们在高端设备(有效面积为1.1 cm2)中实现了12.1%的效率。