Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers.
Scientific Data ( IF 5.8 ) Pub Date : 2020-01-20 , DOI: 10.1038/s41597-020-0360-7 Lijie Deng 1 , Junyan Lyu 1 , Haixiang Huang 2 , Yuqing Deng 2 , Jin Yuan 2 , Xiaoying Tang 1
Scientific Data ( IF 5.8 ) Pub Date : 2020-01-20 , DOI: 10.1038/s41597-020-0360-7 Lijie Deng 1 , Junyan Lyu 1 , Haixiang Huang 2 , Yuqing Deng 2 , Jin Yuan 2 , Xiaoying Tang 1
Affiliation
Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.
中文翻译:
南方科技大学-中山大学角膜溃疡自动分割和分类数据集。
角膜溃疡是一种常见的眼科症状。需要分割算法来从眼染色图像中识别和量化角膜溃疡。由于缺乏高质量的数据集(眼部染色图像和相应的金标准溃疡分割标签),尤其是基于监督学习的分割算法,此类算法的发展受到阻碍。在这种背景下,我们准备了一个包含 712 个眼部染色图像和片状角膜溃疡相关分割标签的数据集。除了片状角膜溃疡的分割标签之外,我们还为每个图像提供三重类别标签:首先,每个图像都有一个关于其一般溃疡模式的标签;其次,每张图像都有一个关于其特定溃疡模式的标签;第三,每张图像都有一个标签,表明其溃疡的严重程度。该数据集不仅为研究角膜溃疡不同分割和分类算法的准确性和可靠性提供了绝佳的机会,而且促进了基于监督学习的新算法(尤其是深度学习框架中的算法)的开发。
更新日期:2020-01-21
中文翻译:
南方科技大学-中山大学角膜溃疡自动分割和分类数据集。
角膜溃疡是一种常见的眼科症状。需要分割算法来从眼染色图像中识别和量化角膜溃疡。由于缺乏高质量的数据集(眼部染色图像和相应的金标准溃疡分割标签),尤其是基于监督学习的分割算法,此类算法的发展受到阻碍。在这种背景下,我们准备了一个包含 712 个眼部染色图像和片状角膜溃疡相关分割标签的数据集。除了片状角膜溃疡的分割标签之外,我们还为每个图像提供三重类别标签:首先,每个图像都有一个关于其一般溃疡模式的标签;其次,每张图像都有一个关于其特定溃疡模式的标签;第三,每张图像都有一个标签,表明其溃疡的严重程度。该数据集不仅为研究角膜溃疡不同分割和分类算法的准确性和可靠性提供了绝佳的机会,而且促进了基于监督学习的新算法(尤其是深度学习框架中的算法)的开发。