当前位置:
X-MOL 学术
›
Prog. Photovoltaics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transparent silicon carbide/tunnel SiO2 passivation for c‐Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV
Progress in Photovoltaics ( IF 8.0 ) Pub Date : 2020-01-16 , DOI: 10.1002/pip.3244 Manuel Pomaska 1 , Malte Köhler 1 , Paul Procel Moya 2 , Alexandr Zamchiy 3, 4 , Aryak Singh 1 , Do Yun Kim 1 , Olindo Isabella 2 , Miro Zeman 2 , Shenghao Li 1, 5 , Kaifu Qiu 1, 5 , Alexander Eberst 1 , Vladimir Smirnov 1 , Friedhelm Finger 1 , Uwe Rau 1 , Kaining Ding 1
Progress in Photovoltaics ( IF 8.0 ) Pub Date : 2020-01-16 , DOI: 10.1002/pip.3244 Manuel Pomaska 1 , Malte Köhler 1 , Paul Procel Moya 2 , Alexandr Zamchiy 3, 4 , Aryak Singh 1 , Do Yun Kim 1 , Olindo Isabella 2 , Miro Zeman 2 , Shenghao Li 1, 5 , Kaifu Qiu 1, 5 , Alexander Eberst 1 , Vladimir Smirnov 1 , Friedhelm Finger 1 , Uwe Rau 1 , Kaining Ding 1
Affiliation
N‐type microcrystalline silicon carbide (μc‐SiC:H(n)) is a wide bandgap material that is very promising for the use on the front side of crystalline silicon (c‐Si) solar cells. It offers a high optical transparency and a suitable refractive index that reduces parasitic absorption and reflection losses, respectively. In this work, we investigate the potential of hot wire chemical vapor deposition (HWCVD)–grown μc‐SiC:H(n) for c‐Si solar cells with interdigitated back contacts (IBC). We demonstrate outstanding passivation quality of μc‐SiC:H(n) on tunnel oxide (SiO2)–passivated c‐Si with an implied open‐circuit voltage of 742 mV and a saturation current density of 3.6 fA/cm2. This excellent passivation quality is achieved directly after the HWCVD deposition of μc‐SiC:H(n) at 250°C heater temperature without any further treatments like recrystallization or hydrogenation. Additionally, we developed magnesium fluoride (MgF2)/silicon nitride (SiNx:H)/silicon carbide antireflection coatings that reduce optical losses on the front side to only 0.47 mA/cm2 with MgF2/SiNx:H/μc‐SiC:H(n) and 0.62 mA/cm2 with MgF2/μc‐SiC:H(n). Finally, calculations with Sentaurus TCAD simulation using MgF2/μc‐SiC:H(n)/SiO2/c‐Si as front side layer stack in an IBC solar cell reveal a short‐circuit current density of 42.2 mA/cm2, an open‐circuit voltage of 738 mV, a fill factor of 85.2% and a maximum power conversion efficiency of 26.6%.
中文翻译:
用于c-Si太阳能电池正面的透明碳化硅/隧道SiO2钝化:使得Jsc> 42 mA / cm2,iVoc为742 mV
N型微晶碳化硅(μc-SiC:H(n))是一种宽带隙材料,非常有希望用于晶体硅(c-Si)太阳能电池的正面。它具有很高的光学透明度和合适的折射率,分别降低了寄生吸收和反射损耗。在这项工作中,我们研究了带交叉背接触(IBC)的c-Si太阳能电池用热线化学气相沉积(HWCVD)生长的μc-SiC:H(n)的潜力。我们证明了μc-SiC:H(n)在隧道氧化物(SiO 2)钝化的c-Si上具有出色的钝化质量,隐含的开路电压为742 mV,饱和电流密度为3.6 fA / cm 2。。在250°C的加热器温度下HcCVD沉积μc-SiC:H(n)之后,无需任何进一步处理(例如重结晶或氢化)即可直接获得这种出色的钝化质量。此外,我们开发了氟化镁(MgF 2)/氮化硅(SiN x:H)/碳化硅抗反射涂层,使用MgF 2 / SiN x:H / μc‐时,将正面的光学损耗降低到仅0.47 mA / cm 2 SiC:H(n)和0.62 mA / cm 2以及MgF 2 /μc-SiC:H(n)。最后,使用MgF 2 /μc-SiC:H(n)/ SiO 2用Sentaurus TCAD模拟进行计算/ c-Si作为IBC太阳能电池的正面叠层,其短路电流密度为42.2 mA / cm 2,开路电压为738 mV,填充系数为85.2%,最大功率转换效率为26.6%。
更新日期:2020-01-16
中文翻译:
用于c-Si太阳能电池正面的透明碳化硅/隧道SiO2钝化:使得Jsc> 42 mA / cm2,iVoc为742 mV
N型微晶碳化硅(μc-SiC:H(n))是一种宽带隙材料,非常有希望用于晶体硅(c-Si)太阳能电池的正面。它具有很高的光学透明度和合适的折射率,分别降低了寄生吸收和反射损耗。在这项工作中,我们研究了带交叉背接触(IBC)的c-Si太阳能电池用热线化学气相沉积(HWCVD)生长的μc-SiC:H(n)的潜力。我们证明了μc-SiC:H(n)在隧道氧化物(SiO 2)钝化的c-Si上具有出色的钝化质量,隐含的开路电压为742 mV,饱和电流密度为3.6 fA / cm 2。。在250°C的加热器温度下HcCVD沉积μc-SiC:H(n)之后,无需任何进一步处理(例如重结晶或氢化)即可直接获得这种出色的钝化质量。此外,我们开发了氟化镁(MgF 2)/氮化硅(SiN x:H)/碳化硅抗反射涂层,使用MgF 2 / SiN x:H / μc‐时,将正面的光学损耗降低到仅0.47 mA / cm 2 SiC:H(n)和0.62 mA / cm 2以及MgF 2 /μc-SiC:H(n)。最后,使用MgF 2 /μc-SiC:H(n)/ SiO 2用Sentaurus TCAD模拟进行计算/ c-Si作为IBC太阳能电池的正面叠层,其短路电流密度为42.2 mA / cm 2,开路电压为738 mV,填充系数为85.2%,最大功率转换效率为26.6%。