当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Understanding Single-Molecule Parallel Circuits on the Basis of Frontier Orbital Theory
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-01-28 , DOI: 10.1021/acs.jpcc.9b08595 Kazuki Okazawa 1 , Yuta Tsuji 1 , Kazunari Yoshizawa 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-01-28 , DOI: 10.1021/acs.jpcc.9b08595 Kazuki Okazawa 1 , Yuta Tsuji 1 , Kazunari Yoshizawa 1
Affiliation
In electronic devices, as the number of paths connecting source and drain electrodes increases, the conductance of the device will also increase. However, this is not always the case on the nanoscale. According to the current superposition law at work in the macroscopic electrical circuits, doubling the number of paths should double the conductance, but when such paths are examined on the basis of the frontier orbital theory for nanoscale electrical circuits, more complex scenarios arise. When the number of paths in a molecule is doubled, the conductance may get more than doubled, remain unchanged, or even be reduced. We propose a classification of conducting systems falling into each of these scenarios with the help of aromaticity. The present work involves a theoretical study using the nonequilibrium Green’s function that shows that these varying outcomes are closely related to the presence or absence of aromatic rings. This work serves to characterize molecular conductance characteristics based on frontier orbital theory, orbital interactions, and a local transmission concept. Some discrete mathematical aspects of the relationship between atom connectivity and electron conductivity are also described.
中文翻译:
基于前沿轨道理论理解单分子并联电路
在电子设备中,随着连接源电极和漏电极的路径数量的增加,设备的电导率也将增加。然而,在纳米级上并非总是如此。根据当前在宏观电路中工作的叠加定律,将路径数量加倍应使电导率增加一倍,但是,根据纳米级电路的前沿轨道理论检查此类路径时,会出现更复杂的情况。当分子中的路径数增加一倍时,电导率可能会增加一倍以上,保持不变甚至降低。我们建议在芳香性的帮助下对属于每种情况的传导系统进行分类。目前的工作涉及使用非平衡格林函数的理论研究,该研究表明这些变化的结果与芳香环的存在与否密切相关。这项工作基于前沿轨道理论,轨道相互作用和局部传输概念来表征分子电导特性。还描述了原子连通性和电子电导率之间关系的一些离散数学方面。
更新日期:2020-01-29
中文翻译:
基于前沿轨道理论理解单分子并联电路
在电子设备中,随着连接源电极和漏电极的路径数量的增加,设备的电导率也将增加。然而,在纳米级上并非总是如此。根据当前在宏观电路中工作的叠加定律,将路径数量加倍应使电导率增加一倍,但是,根据纳米级电路的前沿轨道理论检查此类路径时,会出现更复杂的情况。当分子中的路径数增加一倍时,电导率可能会增加一倍以上,保持不变甚至降低。我们建议在芳香性的帮助下对属于每种情况的传导系统进行分类。目前的工作涉及使用非平衡格林函数的理论研究,该研究表明这些变化的结果与芳香环的存在与否密切相关。这项工作基于前沿轨道理论,轨道相互作用和局部传输概念来表征分子电导特性。还描述了原子连通性和电子电导率之间关系的一些离散数学方面。