Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation.
Nanoscale ( IF 5.8 ) Pub Date : 2020-02-06 , DOI: 10.1039/c9nr09696e Liang Ma 1 , You-Long Chen 1 , Da-Jie Yang 2 , Hai-Xia Li 1 , Si-Jing Ding 3 , Lun Xiong 1 , Ping-Li Qin 1 , Xiang-Bai Chen 1
Nanoscale ( IF 5.8 ) Pub Date : 2020-02-06 , DOI: 10.1039/c9nr09696e Liang Ma 1 , You-Long Chen 1 , Da-Jie Yang 2 , Hai-Xia Li 1 , Si-Jing Ding 3 , Lun Xiong 1 , Ping-Li Qin 1 , Xiang-Bai Chen 1
Affiliation
Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes. Extinction tests and numerical simulations synergistically revealed that the multigap Au/AgAu hybrids possess a gap-dependent light absorption region and a local electric field owing to the multigap-induced multi-interfacial plasmon coupling. With these characteristics, hetero-photocatalysts prepared by further coating of CdS shells on multigap Au/AgAu cores exhibited a prominent gap-dependent photocatalytic hydrogen production activity from water splitting under light irradiation (λ > 420 nm). It is found that the hydrogen generation rates of multigap (Au/AgAu)@CdS have an exponential improvement compared with that of pure CdS as the number of nanogaps increases. In particular, four-gap (Au/AgAu)@CdS core-shell catalysts displayed the highest hydrogen generation rate, that is 96.1 and 47.2 times those of pure CdS and gapless Au@CdS core-shell hybrids. These improvements can be ascribed to the strong plasmon absorption and near-field enhancement induced by the multi-interfacial plasmon coupling, which can greatly improve the light-harvesting efficiency, offer more plasmonic energy, and boost the generation and separation of electron-hole pairs in the multigap catalysts.
中文翻译:
多间隙(Au / AgAu)@CdS核-壳杂化体中的多界面等离激元耦合,用于有效的光催化制氢。
等离子体耦合诱导的强光吸收和近场增强在高效光催化应用中具有巨大潜力。在此,通过一种有效的光催化制氢策略,制备了具有强多界面等离子体耦合的(Au / AgAu)@CdS核-壳杂化体。具有可调节数量的纳米间隙(从一到四个)的双金属Au / AgAu核主要是通过控制良好的多周期电流置换和过度生长过程合成的。消光试验和数值模拟协同表明,由于多间隙诱导的多界面等离子体激元耦合,多间隙Au / AgAu杂化体具有间隙依赖的光吸收区域和局部电场。具有这些特征 通过在多能隙Au / AgAu核上进一步涂覆CdS壳而制备的杂化光催化剂在光照射下(λ> 420 nm)分解水表现出明显的间隙依赖性光催化产氢活性。研究发现,随着纳米间隙数量的增加,多间隙(Au / AgAu)@CdS的氢生成速率与纯CdS相比具有指数级的提高。特别地,四间隙(Au / AgAu)@CdS核壳催化剂显示出最高的氢生成速率,是纯CdS和无间隙Au @ CdS核-壳杂化物的氢生成速率的96.1和47.2倍。这些改进可归因于多界面等离子体激元耦合引起的强烈等离子体吸收和近场增强,可大大提高光捕获效率,提供更多的等离子体能,
更新日期:2020-02-20
中文翻译:
多间隙(Au / AgAu)@CdS核-壳杂化体中的多界面等离激元耦合,用于有效的光催化制氢。
等离子体耦合诱导的强光吸收和近场增强在高效光催化应用中具有巨大潜力。在此,通过一种有效的光催化制氢策略,制备了具有强多界面等离子体耦合的(Au / AgAu)@CdS核-壳杂化体。具有可调节数量的纳米间隙(从一到四个)的双金属Au / AgAu核主要是通过控制良好的多周期电流置换和过度生长过程合成的。消光试验和数值模拟协同表明,由于多间隙诱导的多界面等离子体激元耦合,多间隙Au / AgAu杂化体具有间隙依赖的光吸收区域和局部电场。具有这些特征 通过在多能隙Au / AgAu核上进一步涂覆CdS壳而制备的杂化光催化剂在光照射下(λ> 420 nm)分解水表现出明显的间隙依赖性光催化产氢活性。研究发现,随着纳米间隙数量的增加,多间隙(Au / AgAu)@CdS的氢生成速率与纯CdS相比具有指数级的提高。特别地,四间隙(Au / AgAu)@CdS核壳催化剂显示出最高的氢生成速率,是纯CdS和无间隙Au @ CdS核-壳杂化物的氢生成速率的96.1和47.2倍。这些改进可归因于多界面等离子体激元耦合引起的强烈等离子体吸收和近场增强,可大大提高光捕获效率,提供更多的等离子体能,