当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Volume Expansion Restriction Effects of Thick TiO2/C Hybrid Coatings on Micro-sized SiOx Anode Materials
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.cej.2020.124106
Fei Dou , Yuehua Weng , Guorong Chen , Liyi Shi , Hongjiang Liu , Dengsong Zhang

In this work, novel SiOx anode materials with low volume expansion and high ionic/electrical conductivity are designed by combining internal buffer space and external super thick TiO2/C hybrid shell of 200-400 nm. An electrochemical reaction visualizing confocal system is originally developed for characterizing electrode thickness changes, and the real-time quantitative change of electrode thickness during charging and discharging is realized. Surprisingly, the maximum thickness expansion of designed anodes with the specific capacity of 1006.2 mA h g-1 is only 37% in the first lithiation process. Subsequently, the designed anodes present stable cycle life of the capacity attenuation of 7.83% after 100 cycles compared with the capacity of 5th cycle. It demonstrates that the designed thick TiO2/C hybrid coatings effectively swing the expansion stress of micro-sized SiOx to internal space. This work proves that the huge volume expansion of micro-sized SiOx particles can be controlled by reasonable design of surface hybrid coatings and bulk structure, and the long lifespan can be maintained. This strategy paves a way for the development of micro-sized SiOx anode materials with long cycle life and good processability for high energy density lithium-ion batteries.



中文翻译:

厚TiO 2 / C杂化涂层对微细SiO x阳极材料的体积膨胀限制作用

在这项工作中,通过结合内部缓冲空间和200-400 nm的外部超厚TiO 2 / C杂化壳,设计了具有低体积膨胀和高离子/电导率的新型SiO x阳极材料。最初开发了一种电化学反应可视化共聚焦系统,用于表征电极厚度的变化,并实现了充电和放电过程中电极厚度的实时定量变化。出乎意料的是,在第一个锂化过程中,比容量为1006.2 mA hg -1的设计阳极的最大厚度膨胀仅为37%。随后,设计的阳极呈现稳定的循环寿命,在100次循环后容量衰减为7.83%,而第五容量为周期。结果表明,所设计的厚TiO 2 / C杂化涂层有效地将微细SiO x的膨胀应力转移到内部空间。这项工作证明,通过合理设计表面杂化涂层和整体结构,可以控制微米级SiO x颗粒的巨大体积膨胀,并可以保持较长的使用寿命。这种策略铺平的方式用于微尺寸的SiO的发展X的阳极材料具有长循环寿命和良好的可加工性的高能量密度的锂离子电池。

更新日期:2020-01-13
down
wechat
bug