当前位置:
X-MOL 学术
›
ACS Cent. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Direct Quantification of Damaged Nucleotides in Oligonucleotides Using an Aerolysin Single Molecule Interface.
ACS Central Science ( IF 12.7 ) Pub Date : 2020-01-09 , DOI: 10.1021/acscentsci.9b01129 Jiajun Wang 1, 2 , Meng-Yin Li 1 , Jie Yang 2 , Ya-Qian Wang 2 , Xue-Yuan Wu 1, 2 , Jin Huang 3 , Yi-Lun Ying 1 , Yi-Tao Long 1
ACS Central Science ( IF 12.7 ) Pub Date : 2020-01-09 , DOI: 10.1021/acscentsci.9b01129 Jiajun Wang 1, 2 , Meng-Yin Li 1 , Jie Yang 2 , Ya-Qian Wang 2 , Xue-Yuan Wu 1, 2 , Jin Huang 3 , Yi-Lun Ying 1 , Yi-Tao Long 1
Affiliation
DNA lesions such as metholcytosine(mC), 8-OXO-guanine (OG), inosine (I), etc. could cause genetic diseases. Identification of the varieties of lesion bases are usually beyond the capability of conventional DNA sequencing which is mainly designed to discriminate four bases only. Therefore, lesion detection remains a challenge due to massive varieties and less distinguishable readouts for structural variations at the molecular level. Moreover, standard amplification and labeling hardly work in DNA lesion detection. Herein, we designed a single molecule interface from the mutant aerolysin (K238Q), whose sensing region shows high compatibility to capture and then directly convert a minor lesion into distinguishable electrochemical readouts. Compared with previous single molecule sensing interfaces, the temporal resolution of the K238Q aerolysin nanopore is enhanced by two orders, which has the best sensing performance in all reported aerolysin nanopores. In this work, the novel K238Q could discriminate directly at least three types of lesions (mC, OG, I) without labeling and quantify modification sites under the mixed heterocomposition conditions of the oligonucleotide. Such a nanopore electrochemistry approach could be further applied to diagnose genetic diseases at high sensitivity.
中文翻译:
使用 Aerolysin 单分子界面直接定量寡核苷酸中的受损核苷酸。
DNA损伤如甲基胞嘧啶(mC)、8-OXO-鸟嘌呤(OG)、肌苷(I)等可引起遗传性疾病。识别病变碱基的种类通常超出了传统DNA测序的能力,传统DNA测序主要设计为仅区分四种碱基。因此,由于分子水平上结构变化的多样性和难以区分的读数,病变检测仍然是一个挑战。此外,标准的扩增和标记在DNA损伤检测中几乎不起作用。在这里,我们设计了一个来自突变体气溶素(K238Q)的单分子界面,其传感区域表现出高度的兼容性,可以捕获微小病变,然后直接将其转化为可区分的电化学读数。与以往的单分子传感接口相比,K238Q气溶素纳米孔的时间分辨率提高了两个数量级,在所有报道的气溶素纳米孔中具有最佳的传感性能。在这项工作中,新型K238Q可以直接区分至少三种类型的病变(mC、OG、I),无需标记,并在寡核苷酸的混合异质组成条件下量化修饰位点。这种纳米孔电化学方法可以进一步应用于高灵敏度诊断遗传疾病。
更新日期:2020-01-23
中文翻译:
使用 Aerolysin 单分子界面直接定量寡核苷酸中的受损核苷酸。
DNA损伤如甲基胞嘧啶(mC)、8-OXO-鸟嘌呤(OG)、肌苷(I)等可引起遗传性疾病。识别病变碱基的种类通常超出了传统DNA测序的能力,传统DNA测序主要设计为仅区分四种碱基。因此,由于分子水平上结构变化的多样性和难以区分的读数,病变检测仍然是一个挑战。此外,标准的扩增和标记在DNA损伤检测中几乎不起作用。在这里,我们设计了一个来自突变体气溶素(K238Q)的单分子界面,其传感区域表现出高度的兼容性,可以捕获微小病变,然后直接将其转化为可区分的电化学读数。与以往的单分子传感接口相比,K238Q气溶素纳米孔的时间分辨率提高了两个数量级,在所有报道的气溶素纳米孔中具有最佳的传感性能。在这项工作中,新型K238Q可以直接区分至少三种类型的病变(mC、OG、I),无需标记,并在寡核苷酸的混合异质组成条件下量化修饰位点。这种纳米孔电化学方法可以进一步应用于高灵敏度诊断遗传疾病。