当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-01-09 , DOI: 10.1002/adfm.201907625 Zahid Hassan 1, 2 , Yannick Matt 1, 2 , Salma Begum 3 , Manuel Tsotsalas 3 , Stefan Bräse 1, 2, 4
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-01-09 , DOI: 10.1002/adfm.201907625 Zahid Hassan 1, 2 , Yannick Matt 1, 2 , Salma Begum 3 , Manuel Tsotsalas 3 , Stefan Bräse 1, 2, 4
Affiliation
Function‐inspired design of molecular building blocks for their assembly into complex systems has been an objective in engineering nanostructures and materials modulation at nanoscale. This article summarizes recent research and inspiring progress in the design/synthesis of various custom‐made chiral, switchable, and highly responsive molecular building blocks for the construction of diverse covalent/noncovalent assemblies with tailored topologies, properties, and functions. Illustrating the judicious selection of building blocks, orthogonal functionalities, and innate physical/chemical properties that bring diversity and complex functions once reticulated into materials, special focus is given to their assembly into porous crystalline networks such as metal/covalent–organic frameworks (MOFs/COFs), surface‐mounted frameworks (SURMOFs), metal–organic cages/rings (MOCs), cross‐linked polymer gels, porous organic polymers (POPs), and related architectures that find diverse applications in life science and various other functional materials. Smart and stimuli‐responsive or dynamic building blocks, once embedded into materials, can be remotely modulated by external stimuli (light, electrons, chemicals, or mechanical forces) for controlling the structure and properties, thus being applicable for dynamic photochemical and mechanochemical control in constructing new forms of matter made to order. Then, an overview of current challenges, limitations, as well as future research directions and opportunities in this field, are discussed.
中文翻译:
分子结构单元组装成集成的复杂功能分子系统:结构化按订单制造的物质
以功能为灵感的分子构造基团设计,以将其组装成复杂的系统一直是纳米级工程纳米结构和材料调制的目标。本文总结了各种定制的手性,可转换和高响应性分子构件的设计/合成方面的最新研究和令人鼓舞的进展,这些分子构件用于构建具有定制拓扑,特性和功能的各种共价/非共价装配体。说明了明智选择的结构单元,正交功能和固有的物理/化学特性,这些特性一旦被网状化后就会带来多样性和复杂的功能,因此特别关注将它们组装成多孔晶体网络,例如金属/共价-有机骨架(MOF / COF),表面安装框架(SURMOF),金属-有机笼/环(MOC),交联的聚合物凝胶,多孔有机聚合物(POP)以及相关的结构,这些结构在生命科学和各种其他功能材料中得到了广泛的应用。一旦将智能和刺激响应或动态构建基块嵌入材料中,就可以通过外部刺激(光,电子,化学或机械力)对其进行远程调制,以控制其结构和特性,从而适用于动态光化学和机械化学控制。构建有序的物质新形式。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。以及在生命科学和各种其他功能材料中找到各种应用的相关架构。一旦将智能和刺激响应或动态构建基块嵌入材料中,就可以通过外部刺激(光,电子,化学或机械力)对其进行远程调制,以控制其结构和特性,从而适用于动态光化学和机械化学控制。构建有序的物质新形式。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。以及在生命科学和各种其他功能材料中找到各种应用的相关架构。一旦将智能和刺激响应或动态构建基块嵌入材料中,就可以通过外部刺激(光,电子,化学或机械力)对其进行远程调制,以控制其结构和特性,从而适用于动态光化学和机械化学控制。构建有序的物质新形式。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。(机械力)来控制结构和性质,因此适用于动态光化学和机械化学控制,以构建有序排列的新形式的物质。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。(机械力)来控制结构和特性,因此适用于动态光化学和机械化学控制,以构造新的有序物质。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。
更新日期:2020-01-09
中文翻译:
分子结构单元组装成集成的复杂功能分子系统:结构化按订单制造的物质
以功能为灵感的分子构造基团设计,以将其组装成复杂的系统一直是纳米级工程纳米结构和材料调制的目标。本文总结了各种定制的手性,可转换和高响应性分子构件的设计/合成方面的最新研究和令人鼓舞的进展,这些分子构件用于构建具有定制拓扑,特性和功能的各种共价/非共价装配体。说明了明智选择的结构单元,正交功能和固有的物理/化学特性,这些特性一旦被网状化后就会带来多样性和复杂的功能,因此特别关注将它们组装成多孔晶体网络,例如金属/共价-有机骨架(MOF / COF),表面安装框架(SURMOF),金属-有机笼/环(MOC),交联的聚合物凝胶,多孔有机聚合物(POP)以及相关的结构,这些结构在生命科学和各种其他功能材料中得到了广泛的应用。一旦将智能和刺激响应或动态构建基块嵌入材料中,就可以通过外部刺激(光,电子,化学或机械力)对其进行远程调制,以控制其结构和特性,从而适用于动态光化学和机械化学控制。构建有序的物质新形式。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。以及在生命科学和各种其他功能材料中找到各种应用的相关架构。一旦将智能和刺激响应或动态构建基块嵌入材料中,就可以通过外部刺激(光,电子,化学或机械力)对其进行远程调制,以控制其结构和特性,从而适用于动态光化学和机械化学控制。构建有序的物质新形式。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。以及在生命科学和各种其他功能材料中找到各种应用的相关架构。一旦将智能和刺激响应或动态构建基块嵌入材料中,就可以通过外部刺激(光,电子,化学或机械力)对其进行远程调制,以控制其结构和特性,从而适用于动态光化学和机械化学控制。构建有序的物质新形式。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。(机械力)来控制结构和性质,因此适用于动态光化学和机械化学控制,以构建有序排列的新形式的物质。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。(机械力)来控制结构和特性,因此适用于动态光化学和机械化学控制,以构造新的有序物质。然后,讨论了该领域当前的挑战,局限性以及未来的研究方向和机会。