Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction.
Small ( IF 13.0 ) Pub Date : 2020-01-08 , DOI: 10.1002/smll.201906133 Bingjun Zhu 1 , Zibin Liang 2 , Ruqiang Zou 2
Small ( IF 13.0 ) Pub Date : 2020-01-08 , DOI: 10.1002/smll.201906133 Bingjun Zhu 1 , Zibin Liang 2 , Ruqiang Zou 2
Affiliation
Urea oxidation reaction (UOR) is the underlying reaction that determines the performance of modern urea-based energy conversion technologies. These technologies include electrocatalytic and photoelectrochemical urea splitting for hydrogen production and direct urea fuel cells as power engines. They have demonstrated great potentials as alternatives to current water splitting and hydrogen fuel cell systems with more favorable operating conditions and cost effectiveness. At the moment, UOR performance is mainly limited by the 6-electron transfer process. In this case, various material design and synthesis strategies have recently been reported to produce highly efficient UOR catalysts. The performance of these advanced catalysts is optimized by the modification of their structural and chemical properties, including porosity development, heterostructure construction, defect engineering, surface functionalization, and electronic structure modulation. Considering the rich progress in this field, the recent advances in the design and synthesis of UOR catalysts for urea electrolysis, photoelectrochemical urea splitting, and direct urea fuel cells are reviewed here. Particular attention is paid to those design concepts, which specifically target the characteristics of urea molecules. Moreover, challenges and prospects for the future development of urea-based energy conversion technologies and corresponding catalysts are also discussed.
中文翻译:
设计基于尿素氧化反应的能量转化高级催化剂。
尿素氧化反应(UOR)是决定现代尿素基能量转换技术性能的基础反应。这些技术包括用于制氢的电催化和光电化学尿素裂解,以及作为动力发动机的直接尿素燃料电池。他们已经显示出巨大的潜力,可以替代目前的水分解和氢燃料电池系统,并具有更有利的运行条件和成本效益。目前,UOR性能主要受6-电子转移过程的限制。在这种情况下,最近已经报道了各种材料设计和合成策略来生产高效的UOR催化剂。这些先进催化剂的性能可通过改变其结构和化学性质(包括孔隙率的形成,异质结构构建,缺陷工程,表面功能化和电子结构调制。考虑到该领域的巨大进步,这里综述了用于尿素电解,光电化学尿素分解和直接尿素燃料电池的UOR催化剂的设计和合成的最新进展。特别注意那些针对尿素分子特性的设计概念。此外,还讨论了基于尿素的能量转化技术和相应催化剂未来发展的挑战和前景。光电化学尿素分解和直接尿素燃料电池在这里进行了综述。特别注意那些针对尿素分子特性的设计概念。此外,还讨论了基于尿素的能量转化技术和相应催化剂未来发展的挑战和前景。光电化学尿素分解和直接尿素燃料电池在这里进行了综述。特别注意那些针对尿素分子特性的设计概念。此外,还讨论了基于尿素的能量转化技术和相应催化剂未来发展的挑战和前景。
更新日期:2020-02-20
中文翻译:
设计基于尿素氧化反应的能量转化高级催化剂。
尿素氧化反应(UOR)是决定现代尿素基能量转换技术性能的基础反应。这些技术包括用于制氢的电催化和光电化学尿素裂解,以及作为动力发动机的直接尿素燃料电池。他们已经显示出巨大的潜力,可以替代目前的水分解和氢燃料电池系统,并具有更有利的运行条件和成本效益。目前,UOR性能主要受6-电子转移过程的限制。在这种情况下,最近已经报道了各种材料设计和合成策略来生产高效的UOR催化剂。这些先进催化剂的性能可通过改变其结构和化学性质(包括孔隙率的形成,异质结构构建,缺陷工程,表面功能化和电子结构调制。考虑到该领域的巨大进步,这里综述了用于尿素电解,光电化学尿素分解和直接尿素燃料电池的UOR催化剂的设计和合成的最新进展。特别注意那些针对尿素分子特性的设计概念。此外,还讨论了基于尿素的能量转化技术和相应催化剂未来发展的挑战和前景。光电化学尿素分解和直接尿素燃料电池在这里进行了综述。特别注意那些针对尿素分子特性的设计概念。此外,还讨论了基于尿素的能量转化技术和相应催化剂未来发展的挑战和前景。光电化学尿素分解和直接尿素燃料电池在这里进行了综述。特别注意那些针对尿素分子特性的设计概念。此外,还讨论了基于尿素的能量转化技术和相应催化剂未来发展的挑战和前景。