当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of Cations in the Methane/Carbon Dioxide Partitioning in Nano- and Mesopores of Illite Using Constant Reservoir Composition Molecular Dynamics Simulation
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-01-15 , DOI: 10.1021/acs.jpcc.9b10051
Narasimhan Loganathan 1 , A. Ozgur Yazaydin 1, 2 , Geoffrey M. Bowers 3 , Brice F. Ngouana-Wakou 4 , Andrey G. Kalinichev 4 , R. James Kirkpatrick 1, 5
Affiliation  

We performed constant reservoir composition molecular dynamics (CRC-MD) simulations at 323 K and 124 bar to quantitatively study the partitioning of fluid species between the nano- and mesopores of clay and a bulk reservoir containing an equimolar mixture of CO2 and CH4. The results show that the basal (001) and protonated edge (010) surfaces of illite both demonstrate a strong preference for CO2 over CH4 adsorption; that the (001) surfaces show a stronger preference for CO2 than the (010) surfaces, especially with K+ as the exchangeable cation; and that the structuring of the near-surface CO2 by K+ is stronger than that by Na+. The protonated (010) surfaces have a somewhat greater preference for CH4, with the concentration near them close to that in the bulk fluid. The effects of the surfaces on the fluid composition extend to approximately 2.0 nm from them, with the fluid composition at the center of the pore becoming essentially the same as the bulk composition at a pore thickness of ∼5.7 nm. The preference of nano- and mesopores bounded by clay minerals for CO2 over CH4 suggests that injection of CO2 into tight reservoirs is likely to displace CH4 into larger pores, thus enhancing its production.

中文翻译:

使用恒定储层组成的分子动力学模拟阳离子在伊利石的纳米和中孔中甲烷/二氧​​化碳分配中的作用

我们在323 K和124 bar下进行了恒定的储层组成分子动力学(CRC-MD)模拟,以定量研究粘土的纳米孔和中孔与包含CO 2和CH 4等摩尔混合物的大体积储层之间的流体种类分配。结果表明,伊利石的基表面(001)和质子化边缘(010)都显示出对CO 2的强烈偏好而不是对CH 4的吸附;(001)表面比(010 )表面表现出更强的CO 2优先性,尤其是当K +为可交换阳离子时;并且K +对近表面CO 2的结构要强于Na+。质子化(010)表面对CH 4的偏爱程度更高,靠近它们的浓度接近于本体流体中的浓度。表面对流体成分的影响从其延伸到大约2.0 nm,孔中心处的流体成分在约5.7 nm的孔厚处变得与本体成分基本相同。由粘土矿物限制的纳米孔和中孔对CO 2的优先级高于CH 4,这表明向致密储层中注入CO 2可能会将CH 4置换为较大的孔隙,从而提高了其产量。
更新日期:2020-01-15
down
wechat
bug