当前位置: X-MOL 学术J. Am. Ceram. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure and lithium‐ion mobility in Li 1.5 M 0.5 Ge 1.5 (PO 4 ) 3 (M = Ga, Sc, Y) NASICON glass‐ceramics
Journal of the American Ceramic Society ( IF 3.5 ) Pub Date : 2020-01-25 , DOI: 10.1111/jace.16998
Igor d'Anciães Almeida Silva 1 , Adriana M. Nieto‐Muñoz 2 , Ana Candida M. Rodrigues 3 , Hellmut Eckert 1, 4
Affiliation  

Lithium-ion batteries played such an important role in the technological revolution that took place in the past two decades that their developers received the 2019 Nobel Prize in Chemistry.1 To date, commercial lithium-ion batteries employ liquid-organic electrolytes which present both operational drawbacks like restricted cyclability (due to electrode corrosion) and health hazards caused by leakage of the electrode.2‒5 All-solid-state batteries are believed to be the next step in the evolution of batteries as they avoid such drawbacks.2‒5 Therefore, optimized solid-state electrolytes with high ionic conductivity are required. One of the most promising solid electrolyte systems found in the literature is based on glass-ceramics in the Na-Super Ionic Conductor (NASICON) phase field.2,3 The first NASICON glass-ceramic systems were reported and patented by J. Fu in 1997.6‒9 Typical compositions are Li1+xAlxM2−x(PO4)3, and Li1+x+yAlyM2−ySixP3−xO12 systems where M = Ti and Ge. In the NASICON structure, tetravalent M ions are octahedrally bonded by corner-sharing oxygens to phosphate tetrahedra. Li+ ions can occupy two sites named M1 (sixfold coordinated located between MO6 octahedra) and M2 (eightfold coordinated and located between two MO6 columns). In the LiGe2(PO4)3 parent compound, the M1 sites are fully occupied while the M2 sites are vacant, and at elevated temperatures, ionic transport occurs by hopping between these sites.2,3,10 To improve the ionic conduction, aliovalent substitution of M4+ by Mʹ3+ ions having slightly larger ionic radii11 than M4+ can be employed. This procedure widens the bottleneck window Received: 22 November 2019 | Revised: 22 December 2019 | Accepted: 22 December 2019 DOI: 10.1111/jace.16998

中文翻译:

Li 1.5 M 0.5 Ge 1.5 (PO 4 ) 3 (M = Ga, Sc, Y) NASICON 微晶玻璃中的结构和锂离子迁移率

锂离子电池在过去 20 年发生的技术革命中发挥了如此重要的作用,其开发者获得了 2019 年诺贝尔化学奖。 1 迄今为止,商用锂离子电池采用液态有机电解质循环能力受限(由于电极腐蚀)和电极泄漏导致的健康危害等缺点。2-5 全固态电池被认为是电池发展的下一步,因为它们避免了这些缺点。2-5因此,需要具有高离子电导率的优化固态电解质。文献中发现的最有前途的固体电解质系统之一是基于钠超离子导体 (NASICON) 相场中的微晶玻璃。 2,3 第一个 NASICON 微晶玻璃系统于 1997.6-9 由 J. Fu 报道并获得专利。典型的成分是 Li1+xAlxM2−x(PO4)3 和 Li1+x+yAlyM2−ySixP3−xO12 系统,其中 M = Ti 和 Ge . 在 NASICON 结构中,四价 M 离子通过角共享氧八面体键合到磷酸盐四面体。Li+ 离子可以占据两个名为 M1(六重配位位于 MO6 八面体之间)和 M2(八重配位并位于两个 MO6 柱之间)的位点。在 LiGe2(PO4)3 母体化合物中,M1 位点被完全占据而 M2 位点空置,并且在升高的温度下,通过这些位点之间的跳跃发生离子传输。2,3,10 为了改善离子传导,异价取代可以使用离子半径比 M4+ 稍大的 Mʹ3+ 离子对 M4+ 的反应。此过程扩大了接收到的瓶颈窗口:2019 年 11 月 22 日 | 修订日期:2019 年 12 月 22 日 | 接受:2019 年 12 月 22 日 DOI:10.1111/jace.16998
更新日期:2020-01-25
down
wechat
bug