当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revealing Principles for Design of Lean-electrolyte Lithium Metal Anode via in-situ Spectroscopy
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-01-03 , DOI: 10.1021/jacs.9b11774 Huan Li 1 , Dongliang Chao 1 , Biao Chen 1, 2 , Xiao Chen 3 , Clarence Chuah 4 , Youhong Tang 4 , Yan Jiao 1 , Mietek Jaroniec 5 , Shi-Zhang Qiao 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-01-03 , DOI: 10.1021/jacs.9b11774 Huan Li 1 , Dongliang Chao 1 , Biao Chen 1, 2 , Xiao Chen 3 , Clarence Chuah 4 , Youhong Tang 4 , Yan Jiao 1 , Mietek Jaroniec 5 , Shi-Zhang Qiao 1
Affiliation
Lean electrolyte conditions are highly pursued for the practical lithium (Li) metal batteries. The previous studies on the Li metal anodes, in general, exhibited good stability with a large excess of electrolyte. However, the targeted design of Li hosts under relatively low electrolyte conditions has been rarely studied so far. Herein, we have shown that the electrolyte con-sumption severely affects the cycling stability of Li metal anode. Considering carbon hosts as typical examples, we innova-tively employed the in-situ synchrotron X-ray diffraction, in-situ Raman spectroscopy and theoretical computations to ob-tain better understanding of the Li nucleation/deposition processes. Besides, we showed the usefulness of in-situ electro-chemical impedance spectra to analyze interfacial fluctuation at the Li/electrolyte interface, and together with the nuclear magnetic resonance data to quantify electrolyte consumption. We have found that uneven Li nucleation/deposition and the crack of surface-area-derived solid-electrolyte-interface (SEI) layer both leads to a great consumption of electrolyte. Then, we suggested a design principle for Li host to overcome the electrolyte loss, that is, uneven growth of Li structure and the crack of SEI layer must be simultaneously controlled. As a proof of concept, we demonstrated the usefulness of a 3D low-surface-area defective graphene host (L-DG) to control Li nucleation/deposition and stabilize SEI layer, contributing to a highly reversible Li plating/stripping. As a result, such a Li host can achieve stable cycles (e.g., 1.0 mAh cm-2) with a low elec-trolyte loading (10 μL). This work demonstrates the necessity to design Li metal anodes under lean electrolyte conditions and brings the Li metal batteries a step closer to their practical applications.
中文翻译:
原位光谱法揭示贫电解质锂金属阳极设计原理
对于实用的锂 (Li) 金属电池,人们高度追求贫电解质条件。先前对锂金属负极的研究通常在电解质过量时表现出良好的稳定性。然而,迄今为止,很少有人研究在相对低电解质条件下锂主体的目标设计。在这里,我们已经表明电解质消耗严重影响锂金属负极的循环稳定性。以碳主体为典型例子,我们创新地采用原位同步加速器X射线衍射、原位拉曼光谱和理论计算来更好地理解锂的成核/沉积过程。此外,我们展示了原位电化学阻抗谱在分析锂/电解质界面的界面波动方面的有用性,并与核磁共振数据一起量化电解质消耗。我们发现不均匀的锂成核/沉积和表面积衍生的固体电解质界面(SEI)层的裂纹都会导致电解质的大量消耗。然后,我们提出了克服电解质损失的锂主体设计原则,即必须同时控制锂结构的不均匀生长和SEI层的裂纹。作为概念证明,我们展示了 3D 低表面积缺陷石墨烯主体 (L-DG) 在控制锂成核/沉积和稳定 SEI 层方面的有用性,有助于高度可逆的锂电镀/剥离。因此,这种锂主体可以在低电解质负载(10 μL)的情况下实现稳定的循环(例如,1.0 mAh cm-2)。
更新日期:2020-01-03
中文翻译:
原位光谱法揭示贫电解质锂金属阳极设计原理
对于实用的锂 (Li) 金属电池,人们高度追求贫电解质条件。先前对锂金属负极的研究通常在电解质过量时表现出良好的稳定性。然而,迄今为止,很少有人研究在相对低电解质条件下锂主体的目标设计。在这里,我们已经表明电解质消耗严重影响锂金属负极的循环稳定性。以碳主体为典型例子,我们创新地采用原位同步加速器X射线衍射、原位拉曼光谱和理论计算来更好地理解锂的成核/沉积过程。此外,我们展示了原位电化学阻抗谱在分析锂/电解质界面的界面波动方面的有用性,并与核磁共振数据一起量化电解质消耗。我们发现不均匀的锂成核/沉积和表面积衍生的固体电解质界面(SEI)层的裂纹都会导致电解质的大量消耗。然后,我们提出了克服电解质损失的锂主体设计原则,即必须同时控制锂结构的不均匀生长和SEI层的裂纹。作为概念证明,我们展示了 3D 低表面积缺陷石墨烯主体 (L-DG) 在控制锂成核/沉积和稳定 SEI 层方面的有用性,有助于高度可逆的锂电镀/剥离。因此,这种锂主体可以在低电解质负载(10 μL)的情况下实现稳定的循环(例如,1.0 mAh cm-2)。