当前位置:
X-MOL 学术
›
Geochem. Trans.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Impacts of hydrous manganese oxide on the retention and lability of dissolved organic matter.
Geochemical Transactions ( IF 0.9 ) Pub Date : 2018-02-13 , DOI: 10.1186/s12932-018-0051-x Jason W Stuckey 1, 2 , Christopher Goodwin 3 , Jian Wang 4 , Louis A Kaplan 5, 6 , Prian Vidal-Esquivel 2 , Thomas P Beebe 3 , Donald L Sparks 2
Geochemical Transactions ( IF 0.9 ) Pub Date : 2018-02-13 , DOI: 10.1186/s12932-018-0051-x Jason W Stuckey 1, 2 , Christopher Goodwin 3 , Jian Wang 4 , Louis A Kaplan 5, 6 , Prian Vidal-Esquivel 2 , Thomas P Beebe 3 , Donald L Sparks 2
Affiliation
Minerals constitute a primary ecosystem control on organic C decomposition in soils, and therefore on greenhouse gas fluxes to the atmosphere. Secondary minerals, in particular, Fe and Al (oxyhydr)oxides-collectively referred to as "oxides" hereafter-are prominent protectors of organic C against microbial decomposition through sorption and complexation reactions. However, the impacts of Mn oxides on organic C retention and lability in soils are poorly understood. Here we show that hydrous Mn oxide (HMO), a poorly crystalline δ-MnO2, has a greater maximum sorption capacity for dissolved organic matter (DOM) derived from a deciduous forest composite Oi, Oe, and Oa horizon leachate ("O horizon leachate" hereafter) than does goethite under acidic (pH 5) conditions. Nonetheless, goethite has a stronger sorption capacity for DOM at low initial C:(Mn or Fe) molar ratios compared to HMO, probably due to ligand exchange with carboxylate groups as revealed by attenuated total reflectance-Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy and scanning transmission X-ray microscopy-near-edge X-ray absorption fine structure spectroscopy coupled with Mn mass balance calculations reveal that DOM sorption onto HMO induces partial Mn reductive dissolution and Mn reduction of the residual HMO. X-ray photoelectron spectroscopy further shows increasing Mn(II) concentrations are correlated with increasing oxidized C (C=O) content (r = 0.78, P < 0.0006) on the DOM-HMO complexes. We posit that DOM is the more probable reductant of HMO, as Mn(II)-induced HMO dissolution does not alter the Mn speciation of the residual HMO at pH 5. At a lower C loading (2 × 102 μg C m-2), DOM desorption-assessed by 0.1 M NaH2PO4 extraction-is lower for HMO than for goethite, whereas the extent of desorption is the same at a higher C loading (4 × 102 μg C m-2). No significant differences are observed in the impacts of HMO and goethite on the biodegradability of the DOM remaining in solution after DOM sorption reaches steady state. Overall, HMO shows a relatively strong capacity to sorb DOM and resist phosphate-induced desorption, but DOM-HMO complexes may be more vulnerable to reductive dissolution than DOM-goethite complexes.
中文翻译:
含水锰氧化物对溶解有机物的保留和不稳定性的影响。
矿物是土壤中有机碳分解的主要生态系统控制,因此也是温室气体向大气通量的控制。次生矿物,特别是Fe和Al(羟基)氧化物(以下统称为“氧化物”)是有机C的重要保护剂,可防止微生物通过吸附和络合反应分解。但是,人们对锰氧化物对土壤中有机碳保留和不稳定性的影响知之甚少。在这里,我们显示出水合的氧化锰(HMO),一种较差的δ-MnO2,对落叶森林复合材料Oi,Oe和Oa地平线浸出液(“ O地平线浸出液”)产生的最大溶解有机物(DOM)的最大吸附能力。 ”,以下是针铁矿在酸性(pH 5)条件下的情况。尽管如此,与HMO相比,针铁矿在较低的C:(Mn或Fe)初始摩尔比下对DOM具有更强的吸附能力,这可能是由于衰减的全反射-傅里叶变换红外光谱显示,配体与羧酸根发生了交换。X射线光电子能谱和扫描透射X射线显微镜-近边缘X射线吸收精细结构光谱结合Mn质量平衡计算表明,DOM吸附到HMO上会引起部分Mn还原溶解和残留HMO的Mn还原。X射线光电子能谱进一步显示,在DOM-HMO配合物中,Mn(II)浓度的增加与氧化C(C = O)含量的增加相关(r = 0.78,P <0.0006)。我们认为DOM是HMO的更可能还原剂,因为Mn(II)诱导的HMO溶解不会改变pH 5下残留HMO的Mn形态。在较低的C负载(2×102μgC m-2)下,通过0.1 M NaH2PO4萃取进行DOM解吸HMO比针铁矿要低,而在较高的C负荷(4×102μgC m-2)下,解吸的程度是相同的。在DOM吸附达到稳态后,HMO和针铁矿对溶液中残留DOM的生物降解性的影响没有观察到显着差异。总体而言,HMO表现出较强的吸附DOM和抵抗磷酸盐诱导的脱附的能力,但DOM-HMO复合物可能比DOM-针铁矿复合物更易于还原溶解。而在较高的碳负荷下(4×102μgC m-2),解吸的程度是相同的。在DOM吸附达到稳态后,HMO和针铁矿对溶液中残留DOM的生物降解性的影响没有观察到显着差异。总体而言,HMO表现出较强的吸附DOM和抵抗磷酸盐诱导的脱附的能力,但DOM-HMO复合物可能比DOM-针铁矿复合物更易于还原溶解。而在较高的碳负荷下(4×102μgC m-2),解吸的程度是相同的。在DOM吸附达到稳态后,HMO和针铁矿对溶液中残留DOM的生物降解性的影响没有观察到显着差异。总体而言,HMO表现出较强的吸附DOM和抵抗磷酸盐诱导的脱附的能力,但DOM-HMO复合物可能比DOM-针铁矿复合物更易于还原溶解。
更新日期:2020-04-22
中文翻译:
含水锰氧化物对溶解有机物的保留和不稳定性的影响。
矿物是土壤中有机碳分解的主要生态系统控制,因此也是温室气体向大气通量的控制。次生矿物,特别是Fe和Al(羟基)氧化物(以下统称为“氧化物”)是有机C的重要保护剂,可防止微生物通过吸附和络合反应分解。但是,人们对锰氧化物对土壤中有机碳保留和不稳定性的影响知之甚少。在这里,我们显示出水合的氧化锰(HMO),一种较差的δ-MnO2,对落叶森林复合材料Oi,Oe和Oa地平线浸出液(“ O地平线浸出液”)产生的最大溶解有机物(DOM)的最大吸附能力。 ”,以下是针铁矿在酸性(pH 5)条件下的情况。尽管如此,与HMO相比,针铁矿在较低的C:(Mn或Fe)初始摩尔比下对DOM具有更强的吸附能力,这可能是由于衰减的全反射-傅里叶变换红外光谱显示,配体与羧酸根发生了交换。X射线光电子能谱和扫描透射X射线显微镜-近边缘X射线吸收精细结构光谱结合Mn质量平衡计算表明,DOM吸附到HMO上会引起部分Mn还原溶解和残留HMO的Mn还原。X射线光电子能谱进一步显示,在DOM-HMO配合物中,Mn(II)浓度的增加与氧化C(C = O)含量的增加相关(r = 0.78,P <0.0006)。我们认为DOM是HMO的更可能还原剂,因为Mn(II)诱导的HMO溶解不会改变pH 5下残留HMO的Mn形态。在较低的C负载(2×102μgC m-2)下,通过0.1 M NaH2PO4萃取进行DOM解吸HMO比针铁矿要低,而在较高的C负荷(4×102μgC m-2)下,解吸的程度是相同的。在DOM吸附达到稳态后,HMO和针铁矿对溶液中残留DOM的生物降解性的影响没有观察到显着差异。总体而言,HMO表现出较强的吸附DOM和抵抗磷酸盐诱导的脱附的能力,但DOM-HMO复合物可能比DOM-针铁矿复合物更易于还原溶解。而在较高的碳负荷下(4×102μgC m-2),解吸的程度是相同的。在DOM吸附达到稳态后,HMO和针铁矿对溶液中残留DOM的生物降解性的影响没有观察到显着差异。总体而言,HMO表现出较强的吸附DOM和抵抗磷酸盐诱导的脱附的能力,但DOM-HMO复合物可能比DOM-针铁矿复合物更易于还原溶解。而在较高的碳负荷下(4×102μgC m-2),解吸的程度是相同的。在DOM吸附达到稳态后,HMO和针铁矿对溶液中残留DOM的生物降解性的影响没有观察到显着差异。总体而言,HMO表现出较强的吸附DOM和抵抗磷酸盐诱导的脱附的能力,但DOM-HMO复合物可能比DOM-针铁矿复合物更易于还原溶解。