当前位置: X-MOL 学术Geochem. Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical speciation and fate of tripolyphosphate after application to a calcareous soil.
Geochemical Transactions ( IF 0.9 ) Pub Date : 2018-01-08 , DOI: 10.1186/s12932-017-0046-z
Jordan G Hamilton 1 , Jay Grosskleg 2 , David Hilger 3 , Kris Bradshaw 2 , Trevor Carlson 4 , Steven D Siciliano 1 , Derek Peak 1
Affiliation  

Adsorption and precipitation reactions often dictate the availability of phosphorus in soil environments. Tripolyphosphate (TPP) is considered a form of slow release P fertilizer in P limited soils, however, investigations of the chemical fate of TPP in soils are limited. It has been proposed that TPP rapidly hydrolyzes in the soil solution before adsorbing or precipitating with soil surfaces, but in model systems, TPP also adsorbs rapidly onto mineral surfaces. To study the adsorption behavior of TPP in calcareous soils, a short-term (48 h) TPP spike was performed under laboratory conditions. To determine the fate of TPP under field conditions, two different liquid TPP amendments were applied to a P limited subsurface field site via an in-ground injection system. Phosphorus speciation was assessed using X-ray absorption spectroscopy, total and labile extractable P, and X-ray diffraction. Adsorption of TPP to soil mineral surfaces was rapid (< 48 h) and persisted without fully hydrolyzing to ortho-P. Linear combination fitting of XAS data indicated that the distribution of adsorbed P was highest (~ 30-40%) throughout the site after the first TPP amendment application (high water volume and low TPP concentrations). In contrast, lower water volumes with more concentrated TPP resulted in lower relative fractions of adsorbed P (15-25%), but a significant increase in total P concentrations (~ 3000 mg P kg soil) and adsorbed P (60%) directly adjacent to the injection system. This demonstrates that TPP application increases the adsorbed P fraction of calcareous soils through rapid adsorption reactions with soil mineral surfaces.

中文翻译:

应用于石灰质土壤后,三聚磷酸盐的化学形态和命运。

吸附和沉淀反应通常决定土壤环境中磷的有效性。三聚磷酸盐(TPP)被认为是在磷有限的土壤中形成的一种缓释磷肥料,但是,对土壤中TPP的化学结局的研究非常有限。有人提出,TPP在被土壤表面吸附或沉淀之前会在土壤溶液中迅速水解,但是在模型系统中,TPP也会快速吸附到矿物表面上。为了研究TPP在石灰性土壤中的吸附行为,在实验室条件下进行了短期(48小时)TPP加标。为了确定田间条件下TPP的命运,通过地面注入系统将两种不同的TPP液体修正剂应用于有限的地下P现场。使用X射线吸收光谱法评估了磷的形态,总和不稳定的可萃取P和X射线衍射。TPP在土壤矿物表面的吸附迅速(<48小时),并且持续存在而没有完全水解为邻位P。XAS数据的线性组合拟合表明,在第一次TPP修正应用后(高水量和低TPP浓度),吸附的P的分布在整个站点中最高(〜30-40%)。相反,较低的水量和较高的TPP浓度会导致吸附的P的相对分数降低(15-25%),但总P浓度(〜3000 mg P kg土壤)和紧邻的P的显着增加(60%)注入系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。TPP在土壤矿物表面的吸附迅速(<48小时),并且持续存在而没有完全水解为邻位P。XAS数据的线性组合拟合表明,在第一次TPP修正应用后(高水量和低TPP浓度),吸附的P的分布在整个站点中最高(〜30-40%)。相反,较低的水量和较高的TPP浓度会导致吸附的P的相对分数降低(15-25%),但总P浓度(〜3000 mg P kg土壤)和紧邻的P的显着增加(60%)注入系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。TPP在土壤矿物表面的吸附迅速(<48小时),并且持续存在而没有完全水解为邻位P。XAS数据的线性组合拟合表明,在第一次TPP修正施用后(高水量和低TPP浓度),吸附的P的分布在整个站点中最高(〜30-40%)。相反,较低的水量和较高的TPP浓度会导致吸附的P的相对分数降低(15-25%),但总P浓度(〜3000 mg P kg土壤)和紧邻的P的显着增加(60%)注入系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。XAS数据的线性组合拟合表明,在第一次TPP修正应用后(高水量和低TPP浓度),吸附的P的分布在整个站点中最高(〜30-40%)。相反,较低的水量和较高的TPP浓度会导致吸附的P的相对分数降低(15-25%),但总P浓度(〜3000 mg P kg土壤)和紧邻的P的显着增加(60%)注入系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。XAS数据的线性组合拟合表明,在第一次TPP修正施用后(高水量和低TPP浓度),吸附的P的分布在整个站点中最高(〜30-40%)。相反,较低的水量和较高的TPP浓度会导致吸附的P的相对分数降低(15-25%),但总P浓度(〜3000 mg P kg土壤)和紧邻的P的显着增加(60%)注入系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。较低的水量和较高的TPP浓度导致吸附的P的相对分数较低(15-25%),但与注射液紧邻的总P浓度(〜3000 mg P kg土壤)和吸附的P(60%)显着增加系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。较低的水量和较高的TPP浓度导致吸附的P的相对分数较低(15-25%),但与注射液紧邻的总P浓度(〜3000 mg P kg土壤)和吸附的P(60%)显着增加系统。这表明,TPP的应用通过与土壤矿物表面的快速吸附反应,增加了石灰性土壤的吸附P分数。
更新日期:2020-04-22
down
wechat
bug