当前位置:
X-MOL 学术
›
J. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2015-05-19 13:26:53 , DOI: 10.1063/1.4919877 M. Samet 1, 2 , V. Levchenko 1 , G. Boiteux 1 , G. Seytre 1 , A. Kallel 2 , A. Serghei 1
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2015-05-19 13:26:53 , DOI: 10.1063/1.4919877 M. Samet 1, 2 , V. Levchenko 1 , G. Boiteux 1 , G. Seytre 1 , A. Kallel 2 , A. Serghei 1
Affiliation
The characteristic frequencies of electrode polarization and of interfacial polarization effects in dielectric spectra of ionic liquids and of polymer bi-layers are determined and systematically analyzed, based on dielectric measurements by means of broadband dielectric spectroscopy, numerical simulations, and analytical calculations. It is shown that, to a large extent, identical scaling laws can be derived for these two dielectric phenomena taking place at external and internal interfaces. Surprisingly, a fundamentally different behavior concerning the interrelation between the characteristic frequencies is found. This brings direct evidence that different manifestations of the phenomenon of electrical polarization can be discriminated by examining the inter-relation governing their characteristic frequencies, which can be of significant importance in disseminating the nature of different contributions appearing in the dielectric spectra of complex materials. Based on our analysis, we derive a new formula, valid for both electrode polarization and interfacial polarization effects, that allows one to determine the conductivity value from the frequency position of the Maxwell-Wagner-Sillars peak. An excellent agreement between experiment and calculations is obtained. The formula can be used, furthermore, to estimate the thickness of the interfacial layers formed due to electrode polarization effects. Values in the order of several nanometers, increasing with decreasing temperature, are reported.
中文翻译:
材料介电谱中的电极极化与Maxwell-Wagner-Sillars界面极化:特征频率和缩放定律
基于宽带介电谱的介电测量,数值模拟和分析计算,确定并系统分析了离子液体和聚合物双层的介电谱中电极极化的特征频率和界面极化效应。结果表明,在很大程度上,对于在外部和内部界面处发生的这两种介电现象,可以得出相同的缩放定律。令人惊讶地,发现了关于特征频率之间的相互关系的根本不同的行为。这带来了直接的证据,即可以通过检查控制其特征频率的相互关系来区分电极化现象的不同表现形式,这对于传播复杂材料介电谱中出现的不同贡献的性质具有重要意义。根据我们的分析,我们得出了一个对电极极化和界面极化效应均有效的新公式,该公式使人们可以从Maxwell-Wagner-Sillars峰的频率位置确定电导率值。实验与计算之间获得了极好的一致性。此外,该公式可用于估计由于电极极化效应而形成的界面层的厚度。据报道,随着温度的降低,数值增加了几纳米。
更新日期:2015-05-20
中文翻译:
材料介电谱中的电极极化与Maxwell-Wagner-Sillars界面极化:特征频率和缩放定律
基于宽带介电谱的介电测量,数值模拟和分析计算,确定并系统分析了离子液体和聚合物双层的介电谱中电极极化的特征频率和界面极化效应。结果表明,在很大程度上,对于在外部和内部界面处发生的这两种介电现象,可以得出相同的缩放定律。令人惊讶地,发现了关于特征频率之间的相互关系的根本不同的行为。这带来了直接的证据,即可以通过检查控制其特征频率的相互关系来区分电极化现象的不同表现形式,这对于传播复杂材料介电谱中出现的不同贡献的性质具有重要意义。根据我们的分析,我们得出了一个对电极极化和界面极化效应均有效的新公式,该公式使人们可以从Maxwell-Wagner-Sillars峰的频率位置确定电导率值。实验与计算之间获得了极好的一致性。此外,该公式可用于估计由于电极极化效应而形成的界面层的厚度。据报道,随着温度的降低,数值增加了几纳米。