当前位置:
X-MOL 学术
›
J. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2016-05-05 17:13:23 , DOI: 10.1063/1.4948461 Hang Chen 1 , Peter Thill 1 , Jianshu Cao 1
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2016-05-05 17:13:23 , DOI: 10.1063/1.4948461 Hang Chen 1 , Peter Thill 1 , Jianshu Cao 1
Affiliation
In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.
中文翻译:
由速率系数的动态无序驱动的遗传拨动开关的过渡
在生化系统中,固有噪声可能会导致系统从一种稳定状态切换到另一种稳定状态。我们研究了双稳态网络中稳态之间的动力学切换如何受到动态无序(即速率系数的波动)的影响。使用几何最小作用法,我们首先基于遗传拨动开关模型研究最优的过渡路径和相应的最小作用,在该模型中,反应系数从离散的概率分布中得出。对于速率系数的连续概率分布,我们然后考虑动态系数的两个模型,其中反应系数经历具有相同平稳分布的不同随机过程。一方面,动力学参数遵循离散的马尔可夫过程,另一方面,它们遵循连续的Langevin动力学。
更新日期:2016-05-06
中文翻译:
由速率系数的动态无序驱动的遗传拨动开关的过渡
在生化系统中,固有噪声可能会导致系统从一种稳定状态切换到另一种稳定状态。我们研究了双稳态网络中稳态之间的动力学切换如何受到动态无序(即速率系数的波动)的影响。使用几何最小作用法,我们首先基于遗传拨动开关模型研究最优的过渡路径和相应的最小作用,在该模型中,反应系数从离散的概率分布中得出。对于速率系数的连续概率分布,我们然后考虑动态系数的两个模型,其中反应系数经历具有相同平稳分布的不同随机过程。一方面,动力学参数遵循离散的马尔可夫过程,另一方面,它们遵循连续的Langevin动力学。