Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bottom-Up Colloidal Crystal Assembly with a Twist
ACS Nano ( IF 15.8 ) Pub Date : 2016-05-04 00:00:00 , DOI: 10.1021/acsnano.6b01854 Nathan A. Mahynski 1 , Lorenzo Rovigatti 2 , Christos N. Likos 2 , Athanassios Z. Panagiotopoulos 3
ACS Nano ( IF 15.8 ) Pub Date : 2016-05-04 00:00:00 , DOI: 10.1021/acsnano.6b01854 Nathan A. Mahynski 1 , Lorenzo Rovigatti 2 , Christos N. Likos 2 , Athanassios Z. Panagiotopoulos 3
Affiliation
Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic band gap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free-energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the “top-down” or “bottom-up” methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently, a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer cosolutes into the crystal phase [Mahynski, N.; Panagiotopoulos, A. Z.; Meng, D.; Kumar, S. K. Nat. Commun.2014, 5, 4472]. By tuning the polymer’s morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously, this approach has only been demonstrated in the limiting case of close-packed crystals. Here, we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this “structure-directing agent” paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm’s basic principles between relatively simple crystals and more complex ones suggests that this represents a valuable addition to presently known self-assembly techniques.
中文翻译:
自底向上扭曲的胶体晶体组件
全球有序的胶体晶格在广泛的光学和催化装置中具有广泛的用途,例如作为光子带隙材料。然而,立体特异性结构的自组装常常被多态性所混淆。小的自由能差异通常会表征不同结构的集合体,从而使得难以随意产生单一形态。解决该问题的当前技术采用以下两种方法之一:“自上而下”或“自下而上”的方法,即分别从最大或最小相关长度尺度开始设计结构。然而,最近,已经提出了第三种指导高保真度的胶体晶体组装的方法,该方法依赖于将聚合物溶质引入到结晶相中[Mahynski,N。]。亚利桑那州Panagiotopoulos;孟D. 库玛(SK)纳特 公社 2014,5,4472]。通过调节聚合物的形态,使其与单个所需晶体的空隙对称性发生唯一相互作用,与聚合物限制相关的熵损失已显示出强烈偏向该相的形成。但是,以前,这种方法仅在紧密堆积的晶体的极限情况下得到了证明。在这里,我们展示了如何将该方法推广并扩展到复杂的开放晶体,说明了这种“结构导向剂”范式在工程化有序胶体材料的纳米级结构中的实用性。这种范例的基本原理在相对简单的晶体和较复杂的晶体之间的高度可移植性表明,这代表了当前已知的自组装技术的宝贵补充。
更新日期:2016-05-04
中文翻译:
自底向上扭曲的胶体晶体组件
全球有序的胶体晶格在广泛的光学和催化装置中具有广泛的用途,例如作为光子带隙材料。然而,立体特异性结构的自组装常常被多态性所混淆。小的自由能差异通常会表征不同结构的集合体,从而使得难以随意产生单一形态。解决该问题的当前技术采用以下两种方法之一:“自上而下”或“自下而上”的方法,即分别从最大或最小相关长度尺度开始设计结构。然而,最近,已经提出了第三种指导高保真度的胶体晶体组装的方法,该方法依赖于将聚合物溶质引入到结晶相中[Mahynski,N。]。亚利桑那州Panagiotopoulos;孟D. 库玛(SK)纳特 公社 2014,5,4472]。通过调节聚合物的形态,使其与单个所需晶体的空隙对称性发生唯一相互作用,与聚合物限制相关的熵损失已显示出强烈偏向该相的形成。但是,以前,这种方法仅在紧密堆积的晶体的极限情况下得到了证明。在这里,我们展示了如何将该方法推广并扩展到复杂的开放晶体,说明了这种“结构导向剂”范式在工程化有序胶体材料的纳米级结构中的实用性。这种范例的基本原理在相对简单的晶体和较复杂的晶体之间的高度可移植性表明,这代表了当前已知的自组装技术的宝贵补充。