当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode.
Nature Communications ( IF 14.7 ) Pub Date : 2016-Apr-18 , DOI: 10.1038/ncomms11397 Benoit Mortemard de Boisse 1, 2 , Guandong Liu 1 , Jiangtao Ma 1 , Shin-Ichi Nishimura 1, 2 , Sai-Cheong Chung 1, 2 , Hisao Kiuchi 3 , Yoshihisa Harada 4, 5 , Jun Kikkawa 6 , Yoshio Kobayashi 7, 8 , Masashi Okubo 1, 2 , Atsuo Yamada 1, 2
Nature Communications ( IF 14.7 ) Pub Date : 2016-Apr-18 , DOI: 10.1038/ncomms11397 Benoit Mortemard de Boisse 1, 2 , Guandong Liu 1 , Jiangtao Ma 1 , Shin-Ichi Nishimura 1, 2 , Sai-Cheong Chung 1, 2 , Hisao Kiuchi 3 , Yoshihisa Harada 4, 5 , Jun Kikkawa 6 , Yoshio Kobayashi 7, 8 , Masashi Okubo 1, 2 , Atsuo Yamada 1, 2
Affiliation
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
中文翻译:
中间蜂窝排序触发层状电池电极中的氧氧化还原化学。
由于钠含量丰富,钠离子电池是有吸引力的储能介质,但可用阴极材料的低容量使其不切实际。钠过量的金属氧化物Na2MO3(M:过渡金属)是颇具吸引力的正极材料,可以通过额外的氧氧化还原反应实现大容量。然而,增强 Na2MO3 容量的一般策略尚未制定。在这里,我们使用 Na2RuO3 的两种多晶型物,证明了蜂窝型阳离子排序在 Na2MO3 中的关键作用。有序的Na2RuO3与蜂窝状有序的[Na(1/3)Ru(2/3)]O2板可提供180 mAh g(-1)的容量(1.3电子反应),而无序的Na2RuO3仅提供135 mAh g(- 1) (1.0-电子反应)。我们阐明,有序Na2RuO3的巨大额外容量是通过具有钛铁矿O1结构的自发有序中间Na1RuO3相实现的,它诱导前线轨道重组以触发氧氧化还原反应,揭示了高容量下稳定氧氧化还原反应的一般必要条件Na2MO3 阴极。
更新日期:2016-04-21
中文翻译:
中间蜂窝排序触发层状电池电极中的氧氧化还原化学。
由于钠含量丰富,钠离子电池是有吸引力的储能介质,但可用阴极材料的低容量使其不切实际。钠过量的金属氧化物Na2MO3(M:过渡金属)是颇具吸引力的正极材料,可以通过额外的氧氧化还原反应实现大容量。然而,增强 Na2MO3 容量的一般策略尚未制定。在这里,我们使用 Na2RuO3 的两种多晶型物,证明了蜂窝型阳离子排序在 Na2MO3 中的关键作用。有序的Na2RuO3与蜂窝状有序的[Na(1/3)Ru(2/3)]O2板可提供180 mAh g(-1)的容量(1.3电子反应),而无序的Na2RuO3仅提供135 mAh g(- 1) (1.0-电子反应)。我们阐明,有序Na2RuO3的巨大额外容量是通过具有钛铁矿O1结构的自发有序中间Na1RuO3相实现的,它诱导前线轨道重组以触发氧氧化还原反应,揭示了高容量下稳定氧氧化还原反应的一般必要条件Na2MO3 阴极。