当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors
Chemistry of Materials ( IF 7.2 ) Pub Date : 2016-04-15 00:00:00 , DOI: 10.1021/acs.chemmater.6b00847
Constantinos C. Stoumpos 1 , Duyen H. Cao 1 , Daniel J. Clark 2 , Joshua Young 3, 4 , James M. Rondinelli 4 , Joon I. Jang 2 , Joseph T. Hupp 1 , Mercouri G. Kanatzidis 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2016-04-15 00:00:00 , DOI: 10.1021/acs.chemmater.6b00847
Constantinos C. Stoumpos 1 , Duyen H. Cao 1 , Daniel J. Clark 2 , Joshua Young 3, 4 , James M. Rondinelli 4 , Joon I. Jang 2 , Joseph T. Hupp 1 , Mercouri G. Kanatzidis 1
Affiliation
![]() |
The hybrid two-dimensional (2D) halide perovskites have recently drawn significant interest because they can serve as excellent photoabsorbers in perovskite solar cells. Here we present the large scale synthesis, crystal structure, and optical characterization of the 2D (CH3(CH2)3NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1, 2, 3, 4, ∞) perovskites, a family of layered compounds with tunable semiconductor characteristics. These materials consist of well-defined inorganic perovskite layers intercalated with bulky butylammonium cations that act as spacers between these fragments, adopting the crystal structure of the Ruddlesden–Popper type. We find that the perovskite thickness (n) can be synthetically controlled by adjusting the ratio between the spacer cation and the small organic cation, thus allowing the isolation of compounds in pure form and large scale. The orthorhombic crystal structures of (CH3(CH2)3NH3)2(CH3NH3)Pb2I7 (n = 2, Cc2m; a = 8.9470(4), b = 39.347(2) Å, c = 8.8589(6)), (CH3(CH2)3NH3)2(CH3NH3)2Pb3I10 (n = 3, C2cb; a = 8.9275(6), b = 51.959(4) Å, c = 8.8777(6)), and (CH3(CH2)3NH3)2(CH3NH3)3Pb4I13 (n = 4, Cc2m; a = 8.9274(4), b = 64.383(4) Å, c = 8.8816(4)) have been solved by single-crystal X-ray diffraction and are reported here for the first time. The compounds are noncentrosymmetric, as supported by measurements of the nonlinear optical properties of the compounds and density functional theory (DFT) calculations. The band gaps of the series change progressively between 2.43 eV for the n = 1 member to 1.50 eV for the n = ∞ adopting intermediate values of 2.17 eV (n = 2), 2.03 eV (n = 3), and 1.91 eV (n = 4) for those between the two compositional extrema. DFT calculations confirm this experimental trend and predict a direct band gap for all the members of the Ruddlesden–Popper series. The estimated effective masses have values of mh = 0.14 m0 and me = 0.08 m0 for holes and electrons, respectively, and are found to be nearly composition independent. The band gaps of higher n members indicate that these compounds can be used as efficient light absorbers in solar cells, which offer better solution processability and good environmental stability. The compounds exhibit intense room-temperature photoluminescence with emission wavelengths consistent with their energy gaps, 2.35 eV (n = 1), 2.12 eV (n = 2), 2.01 eV (n = 3), and 1.90 eV (n = 4) and point to their potential use in light-emitting diodes. In addition, owing to the low dimensionality and the difference in dielectric properties between the organic spacers and the inorganic perovskite layers, these compounds are naturally occurring multiple quantum well structures, which give rise to stable excitons at room temperature.
中文翻译:
Ruddlesden-Popper混合碘化物钙钛矿2D同源半导体
混合二维(2D)卤化物钙钛矿最近引起了广泛的兴趣,因为它们可以用作钙钛矿太阳能电池中的优异光吸收剂。在这里,我们提出了2D(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)n -1 Pb n I 3 n +1(n= 1,2,3,4,∞)钙钛矿,这是一种具有可调半导体特性的层状化合物。这些材料由明确定义的无机钙钛矿层组成,中间插入有大量丁基铵阳离子,这些丁基铵阳离子充当这些片段之间的间隔基,采用了Ruddlesden-Popper类型的晶体结构。我们发现钙钛矿的厚度(n)可以通过调节间隔基阳离子和小的有机阳离子之间的比例来综合控制,从而可以分离出纯净和大规模的化合物。(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)Pb 2的正交晶体结构I 7(n = 2,Cc2m;a = 8.9470(4),b = 39.347(2)Å,c = 8.8589(6)),(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)2 Pb 3 I 10(n = 3,C2cb ; a = 8.9275(6),b = 51.959(4)Å,c = 8.8777(6))和(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)3 Pb 4 I 13(n = 4,Cc2m ; a = 8.9274(4),b = 64.383(4)Å,c = 8.8816(4))已通过单晶X射线求解衍射,这是第一次在这里报道。化合物是非中心对称的,这得益于化合物非线性光学性质的测量和密度泛函理论(DFT)计算。该系列的带隙在n = 1的成员的2.43 eV到n =∞的1.50 eV之间逐渐变化,采用的中间值为2.17 eV(n= 2),两个成分极值之间的值分别为2.03 eV(n = 3)和1.91 eV(n = 4)。DFT计算证实了这一实验趋势,并预测了Ruddlesden–Popper系列所有成员的直接带隙。对于空穴和电子,估计的有效质量的值分别为m h = 0.14 m 0和m e = 0.08 m 0,并且发现它们几乎与组成无关。高n的带隙成员指出,这些化合物可以用作太阳能电池中有效的光吸收剂,它们具有更好的溶液加工性能和良好的环境稳定性。这些化合物表现出强烈的室温光致发光特性,其发射波长与其能隙一致,分别为2.35 eV(n = 1),2.12 eV(n = 2),2.01 eV(n = 3)和1.90 eV(n = 4),并且指出了它们在发光二极管中的潜在用途。另外,由于低尺寸以及有机间隔物和无机钙钛矿层之间的介电性质的差异,这些化合物是天然存在的多量子阱结构,其在室温下产生稳定的激子。
更新日期:2016-04-15
中文翻译:

Ruddlesden-Popper混合碘化物钙钛矿2D同源半导体
混合二维(2D)卤化物钙钛矿最近引起了广泛的兴趣,因为它们可以用作钙钛矿太阳能电池中的优异光吸收剂。在这里,我们提出了2D(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)n -1 Pb n I 3 n +1(n= 1,2,3,4,∞)钙钛矿,这是一种具有可调半导体特性的层状化合物。这些材料由明确定义的无机钙钛矿层组成,中间插入有大量丁基铵阳离子,这些丁基铵阳离子充当这些片段之间的间隔基,采用了Ruddlesden-Popper类型的晶体结构。我们发现钙钛矿的厚度(n)可以通过调节间隔基阳离子和小的有机阳离子之间的比例来综合控制,从而可以分离出纯净和大规模的化合物。(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)Pb 2的正交晶体结构I 7(n = 2,Cc2m;a = 8.9470(4),b = 39.347(2)Å,c = 8.8589(6)),(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)2 Pb 3 I 10(n = 3,C2cb ; a = 8.9275(6),b = 51.959(4)Å,c = 8.8777(6))和(CH 3(CH 2)3 NH 3)2(CH 3 NH 3)3 Pb 4 I 13(n = 4,Cc2m ; a = 8.9274(4),b = 64.383(4)Å,c = 8.8816(4))已通过单晶X射线求解衍射,这是第一次在这里报道。化合物是非中心对称的,这得益于化合物非线性光学性质的测量和密度泛函理论(DFT)计算。该系列的带隙在n = 1的成员的2.43 eV到n =∞的1.50 eV之间逐渐变化,采用的中间值为2.17 eV(n= 2),两个成分极值之间的值分别为2.03 eV(n = 3)和1.91 eV(n = 4)。DFT计算证实了这一实验趋势,并预测了Ruddlesden–Popper系列所有成员的直接带隙。对于空穴和电子,估计的有效质量的值分别为m h = 0.14 m 0和m e = 0.08 m 0,并且发现它们几乎与组成无关。高n的带隙成员指出,这些化合物可以用作太阳能电池中有效的光吸收剂,它们具有更好的溶液加工性能和良好的环境稳定性。这些化合物表现出强烈的室温光致发光特性,其发射波长与其能隙一致,分别为2.35 eV(n = 1),2.12 eV(n = 2),2.01 eV(n = 3)和1.90 eV(n = 4),并且指出了它们在发光二极管中的潜在用途。另外,由于低尺寸以及有机间隔物和无机钙钛矿层之间的介电性质的差异,这些化合物是天然存在的多量子阱结构,其在室温下产生稳定的激子。