[1] Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo, H.-J.; Qian, H.; Wu, H. Neuro-inspired computing chips, Nat. Electron. 2020, 3, 371-382.
[2] Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors, Nature. 2020, 579, 62-66.
[3] Zhang, Z.; Wang, S.; Liu, C.; Xie, R.; Hu, W.; Zhou, P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition, Nat. Nanotech. 2022, 17, 27-32.
[4] Ma, N.; Zhang, K.; Yang, Y. Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System, Adv. Mater. 2017, 29, 1703694.
[5] Peng, W.; Wang, X.; Yu, R.; Dai, Y.; Zou, H.; Wang, A. C.; He, Y.; Wang, Z. L. Enhanced Performance of a Self-Powered Organic/Inorganic Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects, Adv. Mater. 2017, 29, 1606698.
[6] Xie, C.; Mak, C.; Tao, X.; Yan, F. Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene, Adv. Funct. Mater. 2017, 27, 1603886.
[7] Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector, Nat. Electron. 2020, 3, 646-655.
[8] Wang, Y.; Zhu, Y.; Gu, H.; Wang, X. Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric Near-Infrared Photodetectors via the Plasmonic Effect, ACS Appl. Mater. Inter. 2021, 13, 57750-57758.
[9] Meng, J.; Li, Q.; Huang, J.; Pan, C.; Li, Z. Self-powered photodetector for ultralow power density UV sensing, Nano Today. 2022, 43, 101399.
[10] Wang, L.; Xue, H.; Zhu, M.; Gao, Y.; Wang, Z. Graded strain-enhanced pyro-phototronic photodetector with a broad and plateau band, Nano Energy. 2022, 97, 107163.
[11] Ohta, J. Smart CMOS image sensors and applications. CRC press: 2020.
[12] Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A. J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm, Science. 2009, 325, 1665-1667.
[13] Liao, F.; Zhou, Z.; Kim, B. J.; Chen, J.; Wang, J.; Wan, T.; Zhou, Y.; Hoang, A. T.; Wang, C.; Kang, J.; Ahn, J.-H.; Chai, Y. Bioinspired in-sensor visual adaptation for accurate perception, Nat. Electron. 2022, 5, 84-91.
[14] Liba, O.; Murthy, K.; Tsai, Y.-T.; Brooks, T.; Xue, T.; Karnad, N.; He, Q.; Barron, J. T.; Sharlet, D.; Geiss, R. Handheld mobile photography in very low light, ACM Trans. Graph. 2019, 38, 164:1-164:16.
[15] Rao, Z.; Lu, Y.; Li, Z.; Sim, K.; Ma, Z.; Xiao, J.; Yu, C. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design, Nat. Electron. 2021, 4, 513-521.
[16] Kim, M.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array, Nat. Electron. 2020, 3, 546-553.
[17] Xie, D.; Wei, L.; Xie, M.; Jiang, L.; Yang, J.; He, J.; Jiang, J. Photoelectric Visual Adaptation Based on 0D‐CsPbBr 3‐Quantum‐Dots/2D‐MoS 2
Mixed‐Dimensional Heterojunction Transistor, Adv. Funct. Mater. 2021, 31, 2010655.
[18] Hong, S.; Choi, S. H.; Park, J.; Yoo, H.; Oh, J. Y.; Hwang, E.; Yoon, D. H.; Kim, S. Sensory Adaptation and Neuromorphic Phototransistors Based on CsPb(Br1-xIx)3 Perovskite and MoS2 Hybrid Structure, ACS Nano. 2020, 14, 9796-9806.
[19] He, Z.; Shen, H.; Ye, D.; Xiang, L.; Zhao, W.; Ding, J.; Zhang, F.; Di, C.-a.; Zhu, D. An organic transistor with light intensity-dependent active photoadaptation, Nat. Electron. 2021, 4, 522-529.
[20] van Breemen, A. J. J. M.; Ollearo, R.; Shanmugam, S.; Peeters, B.; Peters, L. C. J. M.; van de Ketterij, R. L.; Katsouras, I.; Akkerman, H. B.; Frijters, C. H.; Di Giacomo, F.; Veenstra, S.; Andriessen, R.; Janssen, R. A. J.; Meulenkamp, E. A.; Gelinck, G. H. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites, Nat. Electron. 2021, 4, 818-826.
[21] Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity, Nat. Commun. 2014, 5.
[22] Bao, C.; Chen, Z.; Fang, Y.; Wei, H.; Deng, Y.; Xiao, X.; Li, L.; Huang, J. Low‐Noise and Large‐Linear‐Dynamic‐Range Photodetectors Based on Hybrid‐Perovskite Thin‐Single‐Crystals, Adv. Mater. 2017, 29, 1703209.
[23] Zhang, Y.; Shen, W.; Wu, S.; Tang, W.; Shu, Y.; Ma, K.; Zhang, B.; Zhou, P.; Wang, S. High-Speed Transition-Metal Dichalcogenides Based Schottky Photodiodes for Visible and Infrared Light Communication, ACS Nano. 2022, 16, 19187-19198.
[24] Shang, H.; Gao, F.; Dai, M.; Hu, Y.; Wang, S.; Xu, B.; Wang, P.; Gao, B.; Zhang, J.; Hu, P. Light‐Induced Electric Field Enhanced Self‐Powered Photodetector Based on Van der Waals Heterojunctions, Small Methods. 2022, 7, 2200966.
[25] Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S.-H.; Hwang, E. High photoresponsivity in an all-graphene p–n vertical junction photodetector, Nat. Commun. 2014, 5.
[26] Dai, R.; Liu, Y.; Wu, J.; Wan, P.; Zhu, X.; Kan, C.; Jiang, M. Self-powered ultraviolet photodetector based on an n-ZnO:Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect, Opt Express. 2021, 29, 30244-30258.
[27] Panwar, V.; Nandi, S.; Majumder, M.; Misra, A. Self-powered ZnO-based pyro-phototronic photodetectors: impact of heterointerfaces and parametric studies, J. Mater. Chem. C. 2022, 10, 12487-12510.
[28] Zhang, Y.; Yang, F.; Guo, Q.; Feng, X.; Duan, Y.; Guo, J.; Cheng, G.; Du, Z. The self-powered photodetector of n-Si/n-ZnO heterojunction with enhanced temperature adaptability via transient current response, J. Phys. D Appl. Phys. 2022, 55, 504004.
[29] Zou, H.; Dai, G.; Wang, A. C.; Li, X.; Zhang, S. L.; Ding, W.; Zhang, L.; Zhang, Y.; Wang, Z. L. Alternating Current Photovoltaic Effect, Adv. Mater. 2020, 32, 1907249.
[30] Wang, Z.; Yu, R.; Wang, X.; Wu, W.; Wang, Z. L. Ultrafast Response p-Si/n-ZnO Heterojunction Ultraviolet Detector Based on Pyro-Phototronic Effect, Adv. Mater. 2016, 28, 6880-6886.
[31] Wang, Y.; Zhu, L.; Feng, Y.; Wang, Z.; Wang, Z. L. Comprehensive Pyro‐Phototronic Effect Enhanced Ultraviolet Detector with ZnO/Ag Schottky Junction, Adv. Funct. Mater. 2018, 1807111.
[32] Feng, Y.; Zhang, Y.; Wang, Y.; Wang, Z. Frequency response characteristics of pyroelectric effect in p-n junction UV detectors, Nano Energy. 2018, 54, 429-436.
[33] Zhang, Y.; Hu, M.; Wang, Z. Enhanced performances of p-si/n-ZnO self-powered photodetector by interface state modification and pyro-phototronic effect, Nano Energy. 2020, 71, 104630.
[34] Yin, B.; Zhang, H.; Qiu, Y.; Luo, Y.; Zhao, Y.; Hu, L. The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination, Nanoscale. 2017, 9, 17199-17206.
[35] Ouyang, B.; Zhang, K.; Yang, Y. Photocurrent Polarity Controlled by Light Wavelength in Self-Powered ZnO Nanowires/SnS Photodetector System, iScience. 2018, 1, 16-23.
[36] You, D.; Xu, C.; Zhang, W.; Zhao, J.; Qin, F.; Shi, Z. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays, Nano Energy. 2019, 62, 310-318.
[37] Kumar, M.; Patel, M.; Kim, J.; Lim, D. Enhanced broadband photoresponse of a self-powered photodetector based on vertically grown SnS layers via the pyro-phototronic effect, Nanoscale. 2017, 9, 19201-19208.
[38] Dong, J.; Wang, Z.; Wang, X.; Wang, Z. L. Temperature dependence of the pyro-phototronic effect in self-powered p-Si/n-ZnO nanowires heterojuncted ultraviolet sensors, Nano Today. 2019, 29, 100798.