当前位置 : X-MOL首页行业资讯 › 厦门大学陈忠教授团队JACS:基于深度学习的Laplace NMR波谱重建

厦门大学陈忠教授团队JACS:基于深度学习的Laplace NMR波谱重建

拉普拉斯核磁共振波谱(Laplace NMR spectroscopy)技术通过检测与分子动力学和自旋相互作用相关的扩散或弛豫等信息,为研究分子的化学结构和物理环境提供了一种强大的工具,因此被广泛应用于化学、材料科学、生物医学、食品科学等多个领域。然而,拉普拉斯NMR波谱的有效性在很大程度上依赖于数据后处理算法从实验采集的指数衰减信号中提取弛豫时间、扩散系数等信息,如拉普拉斯反演(ILT)。由于ILT问题本质上是不适定的,因此很难进行令人满意的拉普拉斯NMR数据处理和重建,特别是对于二维拉普拉斯NMR实验。传统的拉普拉斯NMR数据处理算法通过人为附加不同的约束来限制解的空间,以得到符合预期的结果,但繁琐的正则化参数调整和冗长的优化迭代过程导致许多实际问题依然未解决,在二维甚至更多维的场景中解的病态性以及对噪声的敏感性面临着更严峻的挑战。为了解决该问题,厦门大学陈忠教授团队将物理信息嵌入仿真数据驱动的神经网络模型中,在国际上首次提出基于深度学习的多维拉普拉斯磁共振快速重建算法(DLEMLR),克服拉普拉斯反演的病态性及提高重建谱图的分辨率,并将重建时间缩短至秒级。

图1. 深度学习增强的多维拉普拉斯重建(DLEMLR)算法流程图。(a)仿真的拉普拉斯NMR数据集,包括二维衰减信号和相应的弛豫或扩散参数分布。(b)用于训练神经网络的输入数据,包含集成了两个维度的拉普拉斯核矩阵(K1K2)的衰减信号(S)。(c)DLEMLR的基本网络架构,包括一个Tokenizer模块,后接Transformer编码器和Projector模块。(d)包含数据驱动损失和物理驱动损失的双目标损失函数。


深度学习旨在识别训练数据集中的基本模式和内在关系,并利用这些信息对未知的数据进行预测。然而,由于仪器机时和样品种类的限制,构建一个庞大的拉普拉斯NMR训练数据集是一件不切实际的事情,因此DLEMLR通过前向物理模型生成仿真数据集来训练神经网络解决拉普拉斯逆问题。DLEMLR的基础架构为简化后的视觉Transformer (ViT) 网络,包含多层感知机(MLP)和多头注意力机制(MHA)。在输入网络前,二维衰减信号与拉普拉斯核矩阵(如与T2弛豫时间相关的,与T1弛豫时间相关的,以及与扩散系数相关的e-bD)集成,随后被划分为小块,并在每个小块中融合嵌入正弦位置编码信息。随后,Tokenizer模块将每个小块压缩成表征弛豫或扩散过程相关的物理属性和高维特征信息的序列。在Transformer编码器中,MHA模块进一步计算这些特征序列之间的相关性,使模型能够高效地整合所有位置的信息。最后,Projector模块生成所有高维特征序列的综合表示,从而得到所需的二维拉普拉斯NMR波谱。此外,作者引入包含物理驱动损失项和数据驱动损失项的双目标损失函数,以提高结果的鲁棒性和与实验数据间的一致性。其中数据驱动损失是网络输出f(S;θ)与理想分布谱F之间的误差,增强了不同组分谱峰位置的准确性。然而,仅依靠数据驱动损失容易使模型忽略了实验样品中分子的固有物理属性,在真实实验数据不符合仿真数据分布时,模型产生的误差较大。因此,作者进一步引入物理驱动损失估计网络输出与给定前向过程输入之间的关系。具体来说,DLEMLR的输出通过给定的拉普拉斯核矩阵(即K1K2)经前向过程变换到二维衰减域中,随后由物理驱动损失函数计算生成的2D衰减信号与原始输入S之间的残差,从而使重建谱峰的物理属性(如线宽、峰高)与实际分布更加一致。

图2. 白波特兰水泥样品的T1-T2相关实验数据的重建结果。(a) 由传统ILT算法Upen2Dtool重建的结果。(b)由GRIN-Toolbox重建的结果。(c) 由DLEMLR重建的结果。(d) ~ (f) 沿T2弛豫时间维度的投影谱。(g) ~ (i)沿T1弛豫时间维度的投影谱。


作者使用来自白色波特兰水泥样品的T1-T2相关实验数据评估DLEMLR的性能。图2展示了三种方法的结果,其中T2 ≈ 0.8 ms和20.0 ms处的两个谱峰在位置、峰高和振幅方面都表现出高度的一致性。白色波特兰水泥的孔隙结构受样品制备的影响,持续的水化过程导致其在储存时间内不断演变,这两个谱峰分别对应于水合物空间和毛细孔中的自旋群。如图2a和2b所示,Upen2DTool和GRIN-Toolbox重建结果中观察到的谱峰宽度较宽,表明谱峰位置存在较大的不确定性。Upen2DTool使用多参数Tikhonov正则化来改善结果的平滑度,导致图2a中所示的谱峰分布较宽且平滑。而 GRIN-Toolbox使用L1范数作为正则化手段提高结果的稀疏性,使谱峰分布相比 Upen2DTool更为尖锐。相比之下,DLEMLR的结果以更高的分辨率和更低的不确定度显示了两个谱峰之间的差异性(图2c),更有利于不同成分谱峰的分离。为了更直观地进行对比,作者在图2d - 2i中提供了沿T1T2弛豫时间维度的投影谱,峰值位置为估计的弛豫时间,而峰宽对应于结果的不确定性。这些投影谱能够更直观展示谱峰分辨率之间的差异,进一步证明了DLEMLR在获得高分辨率谱峰方面的优越性能。此外,DLEMLR 所需的处理时间,包括数据预处理和算法迭代,仅为 Upen2DTool和GRIN-Toolbox 所需时间的约10%。

图3. 奶酪成熟过程不同天数测量的 T1-T2相关实验数据的重建结果。(a)奶酪凝胶网络的示意图。(b)第10天,(c)第15天,和(d)第20天的T1-T2相关谱。


为了验证 DLEMLR 在处理复杂样品方面的有效性,作者使用了在奶酪成熟过程中第10天、第15天和第20天采集的三组T1-T2实验数据。如图3所示,在奶酪生产过程中形成了由水、液态脂肪和酪蛋白组成的奶酪凝胶网络,其演变受牛奶质量、牛奶类型、乳酶等因素的影响。如图3b,在成熟第10天测量的T1-T2相关谱中识别出了三个高分辨率信号。第一个信号(图3中标记为“W”),T1 ≈ 320 ms和T2 ≈ 40 ms,被归属为来源于水分子。第二个信号(图3中标记为“P”),T1 ≈ 160 ms和T2 ≈ 4 ms,被归属为酪蛋白中锁住的水分子,其T1弛豫时间和T2弛豫时间的比值约为40,表明化学交换是T2弛豫的一种高效机制。第三个信号(图5中标记为“F”),T1 ≈ 100 ms和T2 ≈ 70 ms,被归属为来源于液态脂肪。该脂肪峰表现出液态特性,其T1弛豫时间和T2弛豫时间的比值约为1,表明脂肪在奶酪中主要以液态形式存在。此外,对T1-T2相关谱中相对峰积分的分析表明,蛋白质和脂肪峰随着成熟时间的增加而成比例增加,而水分子峰则逐渐减少。实验结果表明DLEMLR方法在处理复杂样品方面具有显著的优势,能够提供高分辨率的成分分析和动态变化监测,对食品工业和其他相关领域具有重要的应用价值。


这一成果近期发表在Journal of the American Chemical Society上,文章第一作者是厦门大学2023级博士研究生陈博,通讯作者为厦门大学陈忠教授、黄玉清教授和杨钰副教授。这一工作得到了国家自然科学基金项目(22161142024, 12275228, 22073078, 12175189, 22304142)和国家重点研发计划项目(2022YFF0707003,2023YFA1607500)等的大力资助。


原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):

Two-Dimensional Laplace NMR Reconstruction through Deep Learning Enhancement

Bo Chen, Ze Fang, Yuebin Zhang, Xun Guan, Enping Lin, Hai Feng, Yunsong Zeng, Shuhui Cai, Yu Yang*, Yuqing Huang*, Zhong Chen*

J. Am. Chem. Soc., 2024, DOI: 10.1021/jacs.4c05211


作者介绍

陈博,博士研究生。2021年7月本科毕业于福州大学电子信息工程专业,随后进入厦门大学电子科学系攻读硕士学位,在2023年申请硕博连读后转为博士培养。现主要研究方向为磁共振波谱信号处理及人工智能算法研究。近两年已在Journal of the American Chemical Society, Analytical Chemistry, Analytica Chimica Acta, IEEE Trans. on Instrumentation & Measurement, Journal of Magnetic Resonance等国际学术期刊上发表7篇论文,其中第一作者署名3篇。


杨钰,厦门大学电子科学系副教授。2004年本科毕业于南京大学电子系,2009年博士毕业于清华大学电机系,2009年至2011年在清华大学从事博士后研究,主要方向为电力系统暂态过程的数学建模。2012年至2015年在美国爱荷华州立大学和麻省理工学院从事博士后研究,主要方向为智能算法在生物固体核磁共振领域的应用。2015年9月加入厦门大学电子科学系,主要方向是应用机器学习和数学优化算法对不同工程应用及基础科学领域的信号处理、数据分析问题进行研究,包括核磁领域的非均匀采样信号重建、扩散排序谱重建,以及工程领域的信号分解与故障检测等,以求构建普适性的方法框架及挖掘共性理论。相关工作在IEEE Trans. on Signal Processing、Analytical Chemistry、IEEE Trans. on Instrumentation & Measurement等国际学术期刊发表。现任IEEE Transactions on Instrumentation and Measurement杂志副编辑。


黄玉清,教授,博士生导师,福建省高校杰出青年科研人才。2006年本科毕业于厦门大学物理系,2011年7月获厦门大学无线电物理专业理学博士学位。2012年8月加入厦门大学电子科学系,主要从事核磁共振波谱技术开发及其相关应用研究,已主持国家自然科学基金面上项目(3项)、青年项目、福建省科技计划工业引导性重点项目等多个项目;在J. Am. Chem. Soc., Anal. Chem., J. Phys. Chem. Lett.等国际刊物上发表70余篇论文,其中第一或通讯作者署名45篇;以第一发明人获18项授权发明专利(中国发明专利15项,美国发明专利2项,韩国发明专利1项)。


陈忠,教授,博士生导师,厦门大学电子科学与技术学院(国家示范性微电子学院)院长,国务院政府特殊津贴专家,闽江学者特聘教授,享受国务院政府特殊津贴专家,从事生物医学电子学和半导体光电研究。中国物理学会理事,中国波谱学专业委员会副主任委员;厦门大学国家集成电路产教融合创新平台执行主任,福建省等离子和磁共振研究重点实验室主任、福建省半导体照明工程技术研究中心主任、福建省半导体照明与显示行业开发基地主任;已主持国家863计划、重点研发计划、科技支撑计划、自然科学基金重点和科学仪器课题等30多项;已在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed等刊物上发表500余篇SCI收录学术论文,出版专著和教材11部章,授权发明专利152件(含美国专利4件),获省部级科学技术一等奖4项和二等奖5项;获国家高等教育教学成果二等奖和国家教材二等奖各1项;现任Journal of Magnetic Resonance, Journal of Chemical Physics, Magnetic Resonance in Chemistry等多个刊物编委,Magnetic Resonance Letters和《波谱学杂志》副主编。


如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

阿拉丁
经济学SSCI期刊
英语语言编辑翻译加编辑新
加速出版服务新
1212购书送好礼
Springer旗下全新催化方向高质新刊
动物学生物学
系统生物学合成生物学
专注于基础生命科学与临床研究的交叉领域
传播分子、细胞和发育生物学领域的重大发现
聚焦分子细胞和生物体生物学
图书出版流程
快速找到合适的投稿机会
热点论文一站获取
定位全球科研英才
中国图象图形学学会合作刊
浙大
日本
北大
岭南大学
深圳湾
南开大学
清华大学
新加坡
北京大学
南科大
ACS材料视界
down
wechat
bug