对于所有化学工作者来说,实验安全都是一个无法回避的关键话题。我们必须充分认识到每个实验的潜在风险,以便在实验前做好充分的准备。然而,是否存在这样一类实验,即使有充分的预防措施,也依然具有很高的风险?答案显然是肯定的,以下与叠氮化学有关的反应就属于这一类:使用化学计量的叠氮酸的反应;形成过渡金属叠氮化合物的反应;以及将无机叠氮化合物与二氯甲烷结合的反应。
众所周知,刚刚获得2022年诺贝尔化学奖的铜催化叠氮-炔环加成合成三氮唑的点击化学反应(点击阅读相关)是一类重要的有机合成策略,而叠氮酸参与的相关转化却非常少见。今年2月,斯洛文尼亚卢布尔雅那大学Martin Gazvoda等人发表了一篇由叠氮酸制备三氮唑的论文(J. Org. Chem., 2022, 87, 4018)。如图1所示,作者使用了化学计量的叠氮化钠、化学计量的酸和催化量的铜来实现该转化,而且反应后处理过程中使用了二氯甲烷。关于如何安全使用大量叠氮化合物,来自美国跨国制药公司百时美施贵宝(BMS)的Daniel S. Treitler和Simon Leung拥有非常丰富的实践经验,他们敏锐地发现了Gazvoda文中实验可能存在一些安全隐患。经过沟通,Gazvoda等人在6月专门发表了一个更正(J. Org. Chem., 2022, 87, 8277),就文中可能引发实验安全问题的部分做出了补充说明。近日,Treitler和Leung又在同一杂志发文(J. Org. Chem. 2022, 87, 11293),指出上述合成三氮唑的过程具有很大的风险,并从以下三个方面进行了分析。
图1. 铜催化叠氮酸参与的三氮唑合成研究。图片来源:J. Org. Chem.
首先,叠氮化钠和酸结合会产生叠氮酸(HN3)。叠氮酸既有剧毒(小鼠半数致死量LD50 = 22 mg/kg),又是一种强力爆炸物;纯的叠氮酸比三硝基甲苯(TNT)更具爆炸性,但其稳定性要差好几个数量级。1891年,Curtius和Radenhausen等人首次分离得到叠氮酸,然而这一实验也让他们付出了巨大的代价!他们发现50毫克的叠氮酸爆炸足以把实验仪器炸成碎片;而700毫克的叠氮酸“自发爆炸”时,产生的冲击波粉碎了附近的所有玻璃容器,他们的另一合作者也因此受伤。作者指出,在处理纯的叠氮酸时,没有绝对安全的最低用量。
对于很多危险化合物而言,被稀释后就会变得相对安全,然而这一经验规律对于叠氮酸并不适用,即使是被稀释后的叠氮酸也依然有很高的爆炸风险。在气相中,当氮气中HN3含量超过10%时就会有爆炸性。在水溶液中,目前还没有一个确切的安全数值,但人们普遍认为质量分数超过20%HN3溶液同样具有爆炸性。HN3在溶液中的特殊风险在于其沸点比较低(约36°C),即便是稀释的非爆炸性溶液也会蒸发和冷凝,也可能产生高浓度、爆炸性的溶液,如图2中的冷凝液滴。这些高浓度HN3冷凝液滴只需最轻微的摩擦或震动——既不需要氧气也不需要火花——就会爆炸(即所谓的“火三角(fire triangle)”不适用;火三角,指引火源、可燃物及助燃剂)。据报道,在处理溶液中的叠氮酸时发生过许多起致人伤亡的爆炸事故。
图2. HN3蒸发冷凝示意图。图片来源:J. Org. Chem.
那么问题来了:对于稀叠氮酸溶液的产生或储存,应该如何安全正确地进行呢?作者认为最佳做法是添加低沸点溶剂(如乙醚或戊烷)来稀释产生的蒸汽和冷凝物。基于温度和pH值的计算,可以进一步了解一定的安全浓度范围。此外,如果反应体系中含有或可能产生叠氮酸,则可以对其溶液上层持续地进行氮气吹扫,让整个装置温度保持在37 °C以上,以确保没有HN3冷凝。
回到上述合成三氮唑的过程,第二个主要的安全问题是铜盐和叠氮化钠的组合。有十几起记录在案的爆炸事故都是由叠氮化亚铜(I)、叠氮化铜(II)或成分不明的铜与叠氮化钠或叠氮酸的混合物引起的,至少已造成16人死亡。在含有无机叠氮或叠氮酸的反应中添加过渡金属是极其危险的行为,加入下面金属对应的盐,如Al、Ca、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Mo、Pd、Ag、Cd、Sn、Sb、Te、Ba、Pt、Au、Hg、Tl、Pb和Bi等,都可能会生成对震动、摩擦和静电敏感的高爆炸性叠氮盐。特别要提的是叠氮化铜(II),据报道,它对震动非常敏感,即使在水中,轻轻扰动结晶固体也会导致剧烈的爆炸。正因为如此,制备或使用无机叠氮化合物的工业设施要严格避免接触金属(即,不使用金属反应器组件、不使用金属配件、不使用金属热电偶、不使用金属药勺,甚至连地漏都应被盖上,以防止叠氮酸进入金属管道)。
最后一个安全问题是在后处理中使用了二氯甲烷。这种操作的风险在于,无机叠氮化物和二氯甲烷混合会产生高爆炸性、震动敏感的二叠氮甲烷(N3CH2N3)。与叠氮酸和叠氮化铜一样,这种危险化合物也与多起爆炸事故有关,其中很多都导致了严重伤亡。
以上种种事故都在提醒所有化学工作者,使用无机叠氮化物时需要严格评估实验风险。最基本的要求是:反应须严格避免与酸、卤代溶剂和金属接触。最后,希望所有化学工作者都要注意这些安全问题,尽自己的一份力量传播对极端危险的认识,以避免过去的悲剧再次发生。
愿大家敬畏实验安全,远离实验事故。
原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):
How Dangerous Is Too Dangerous? A Perspective on Azide Chemistry
Daniel S. Treitler* and Simon Leung
J. Org. Chem., 2022, 87, 11293-11295. DOI: 10.1021/acs.joc.2c01402
如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOL ( x-mol.com ), 未经许可,谢绝转载!