当前位置 : X-MOL首页行业资讯 › Nature:太阳光催化分解水制氢的“大”突破

Nature:太阳光催化分解水制氢的“大”突破

自工业革命以来,人类已经向地球大气排放了巨量的温室气体二氧化碳,环境问题日益突出(如气候变暖、冰川消融、海平面上升等),严重制约了人类的生存和发展。因此,科学家们致力于发展新型碳中和能源,比如氢能,它被普遍视为一种清洁、高效、安全、可持续的绿色能源。迄今为止,制氢的方法主要有以下几种:化石燃料制氢、电解水制氢、工业副产制氢以及新型制氢方法(生物质制氢、太阳能分解水制氢、热化学裂解水制氢等),其中太阳能分解水制氢可将太阳能转化并储存为化学能,因此被视为解决全球性能源与环境问题的理想方式之一。目前最高效的太阳能分解水制氢方案是将太阳能电池与水电解系统相结合,太阳能至氢(solar-to-hydrogen, STH)能量转换效率已有高达30%的报道(Nat. Commun., 20167, 13237)。相比之下,光催化分解水制氢虽然能量转换效率低不少(仅约1%),但整个系统设计要简单得多,成本更低且更易于规模化,工业化前景更好。不过,光催化分解水的产物是湿润的氢氧混合气体,安全性以及氢气回收仍是规模化应用的巨大挑战。


近日,日本东京大学Kazunari Domen教授课题组基于改良的铝掺杂钛酸锶(SrTiO3:Al)光催化剂,将先前发展的1 m2面板反应器系统拓展为100 m2的太阳光催化分解水制氢系统,安全且大规模地实现了光催化水分解、气体收集及分离。该系统不仅能稳定运行数月,而且在商用聚酰亚胺膜的作用下能从湿润的气体混合物中回收氢气,最大STH效率为0.76%。值得一提的是,该系统对安全性和耐用性进行了优化,甚至在有意点燃回收氢气的情况下仍可保持完好无损。相关成果于近期发表在Nature 上。

图1. 100 m2光催化水裂解反应器单元(a-b)及阵列(c)。图片来源:Nature


首先,作者使用光催化剂片层的面板反应器进行光催化水裂解,以探索太阳能制氢的规模化和气体处理技术。如图1所示,该100 m2规模的光催化太阳能制氢系统是由1600 个反应器单元排列而成,每个单元的受光面积为 625 cm2,紫外线透明玻璃与光催化剂片层之间的间隙为 0.1 mm(图1a-b),以最大限度地减少水载荷并防止产物氢氧气体的积聚和燃烧发生。需要指出的是,该系统中气体产物输送和反应物水输送分别使用内径为 8.6 mm 和 4.0 mm的聚氨酯管。

图2. 光催化剂片层的电子显微镜图像。图片来源:Nature


接下来,作者通过两种途径(即在透明玻璃板上手动制备和在磨砂玻璃板上进行程序化喷涂)制备了光催化剂片层,前者于2019年8月安装并使用至2020年7月,之后在不更改其它系统部件的情况下更换为后者。如图2所示,颗粒催化剂层覆盖在玻璃板的整个表面上,厚度为4 μm至10 μm。光催化剂片层含有大小为数百纳米的改性SrTiO3:Al颗粒,并被二氧化硅纳米颗粒固定,同时在颗粒间空隙中形成介孔通道(图2c)。


在构建大型面板反应器阵列之前,作者使用小型面板反应器并将其暴露于模拟标准阳光(AM 1.5G,1 kW m-2)下进行了室内加速测试。经过几天的活化期后,作者发现在透明玻璃上制造的小型光催化剂片层(5 cm × 5 cm)能将蒸馏水分解为氢和氧,其STH效率为0.48%(图3a),并且STH效率随时间的推移逐渐降低(280 h内降至0.40%以下)。相比之下,在磨砂玻璃上制造的光催化剂片层则活性更高且更耐用,活化后的STH效率达到0.51%,并且在1600 h内保持在0.40%以上(图3b)。

图3. 光催化剂的耐用性测试比较。图片来源:Nature


试验光触面板反应器阵列由三个模块组成,总光接收面积为9 m2,暴露在辐照强度为0.88 kW m-2的自然光下能以568 mL min-1的速率产生湿润的氢氧气体,STH效率可达0.76%。作者还使用磨砂玻璃上制备的光催化剂片层构建了100 m2光催化水裂解反应器阵列,并对该过程的太阳光强度、氢氧气体生产量、每日 STH 效率以及太阳辐照中紫外线比例等数据进行了连续的记录,发现气体生产速率在2020年9月22日的上午11:00-11:30(室外温度为34 ℃)达到峰值(3.6-3.7 L min-1)(气体收集如下图所示)。然而,该系统在自然阳光下STH效率会随着时间的推移逐渐降低,考虑光催化剂片层的耐用性,这种效率降低还可能与天气因素有关(从9月到12月)。

9-1-1.gif


由于膜分离装置和隔膜泵处理气态产物的能力超过了气体析出的速率,因此该气体处理装置只需间歇性工作以分离氢气(图4a),其中富氢滤过气体在常压下由隔膜泵排出,而残留的富氧气体则从滤芯中排出。另外,图4b和图4c分别显示了进料、滤过和残留气体的累积量以及太阳光照强度和水裂解面板反应器中气体析出率的变化。需要指出的是,无论在不同天气条件下湿润氢氧气体的生产速率如何,气体分离膜装置在整个现场测试过程中都没有任何劣化的迹象。

图4. 气体分离装置的性能。图片来源:Nature


此外,整个制氢系统在户外条件下运行一年多且未发生自发爆炸或其它故障。为了进行更严格的安全测试,作者对该太阳能制氢系统的每个组件进行了氢氧气体有意点燃测试。当连接的气体收集管中的气体产物被有意点燃之后,大部分光催化水裂解反应器阵列(具有70 m2光接收面积并在阳光下运行)、管道、中空聚酰亚胺纤维膜分离器、气体分离装置都几乎无损并能保持功能,储气罐稍作优化调整,也能通过有意点燃测试。总之,这些结果表明只要进行适当优化,该系统在大规模生产氢气时可保证安全。


简评


笔者以为,Kazunari Domen教授课题组这项工作的关键就是一个字——“大”。他们将太阳光催化分解水制氢的规模拓展到 100 m2,这似乎也大大提高了该领域使用“大规模”这个词的门槛。尽管该系统够大,但也要看到效率仍很低,成本也不算低,作者团队也坦陈未来仍需要对反应器和工艺进行持续优化,大幅度降低成本,并提高 STH 效率、光催化剂稳定性和气体分离效率,以提高实际应用的竞争力。无论如何,这项研究毕竟是朝着实用所迈出的一步,期待未来他们能有大突破。


原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):

Photocatalytic solar hydrogen production from water on a 100 m2-scale

Hiroshi Nishiyama, Taro Yamada, Mamiko Nakabayashi, Yoshiki Maehara, Masaharu Yamaguchi, Yasuko Kuromiya, Hiromasa Tokudome, Seiji Akiyama, Tomoaki Watanabe, Ryoichi Narushima, Sayuri Okunaka, Naoya Shibata, Tsuyoshi Takata, Takashi Hisatomi, Kazunari Domen

Nature2021, DOI: 10.1038/s41586-021-03907-3


如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

阿拉丁
Springer旗下全新催化方向高质新刊
风险管理自然灾害预警
可持续能源系统
1111购书享好礼-信息流
动物学生物学
心理学Q1期刊
编辑润色服务全线九折优惠
系统生物学合成生物学
英语语言编辑 翻译加编辑
专注于基础生命科学与临床研究的交叉领域
遥感数据采集
数字地球
开学添书香,满额有好礼
加速出版服务
传播分子、细胞和发育生物学领域的重大发现
环境管理资源效率浪费最小化
先进材料生物材料
聚焦分子细胞和生物体生物学
“转化老年科学”.正在征稿
化学工程
wiley你是哪种学术人格
细胞生物学
100+材料学期刊
人工智能新刊
图书出版流程
征集眼内治疗给药新技术
英语语言编辑服务
快速找到合适的投稿机会
动态系统的数学与计算机建模
热点论文一站获取
定位全球科研英才
中国图象图形学学会合作刊
东北石油大学合作期刊
动物源性食品遗传学与育种
专业英语编辑服务
北京大学
罗文大学
浙江大学
化学所
新加坡国立
上海交大
谢作伟
东北师范
北京大学
新加坡
ACS材料视界
down
wechat
bug