论文标题:Three-dimensional entanglement on a silicon chip
作者:Liangliang Lu, et.al
数字识别码:10.1038/s41534-020-0260-x
微信链接:点击此处阅读微信文章
The following article is from 两江科技评论 Author 九乡河
量子纠缠是一种违反经典物理常识的量子特性,是量子通信和量子计算的重要物理资源,其中高维量子纠缠在多种量子信息任务中具有独特的优势。南京大学物理学院马小松,祝世宁团队在npj Quantum Information 上发表了他们的研究结果‘Three-dimensional entanglement on a silicon chip’,该团队在硅基集成光量子芯片上实现了高维纠缠态的产生,滤波,调控等多项功能,并且利用高精度的片上量子调控验证了量子模拟与量子精密测量等应用任务。
图释:a.三维量子纠缠芯片;b.光学显微镜图;c.实验设备示意图。
量子纠缠是量子系统所特有的奇异性质,它于1935年由薛定谔给予定义。量子系统的纠缠类型主要包括多体量子纠缠和高维量子纠缠。其中,高维纠缠态(维度> 2)由于其独特的性质而引起了人们的极大兴趣。随着量子系统的维度增加,相对于常用的二维量子系统,高维量子系统具有更强计算能力、高信息容量以及强抗噪声能力等优势。光子作为量子信息的载体具有相干性好、多自由度、易调控等优点,是实现高维纠缠的理想体系。然而,如何高效的制备高维纠缠光子对并对其进行高精度、可编程的任意相干调控,是量子信息技术走向规模应用的一大挑战。该团队利用集成光学芯片的微纳加工,借助硅的三阶非线性,采用优化设计的干涉型微环谐振腔,通过对芯片上光子的路径模式进行编码,实现芯片上的三维光量子态的产生,滤波,调控等多项功能,形成功能齐全的集成光量子芯片(见上图)。通过硅波导中自发参量四波混频效应及对线性光路的高稳定、可重构相干调控,团队实现了提取效率高于97%、无需滤波后处理、对泵浦光子高抑制的双光子源;得到了片上量子干涉可见度高于96.5%,三维最大纠缠态的保真度达到95.5%。基于这个高质量的三维纠缠态,团队实验完成了对三维贝尔不等式的验证与无相容性漏洞的量子互文性检验。在量子模拟方面,通过对三维纠缠量子态的操控,团队首次实现了利用量子光学器件模拟图论,特别是通过量子态的相干性的测量直接获得图的完美匹配数。在信息复杂度理论中,获得图的完美匹配数是属于#P完全(#P-complete)复杂度。这就意味着利用已知的经典算法无法有效解决这个问题。这个工作首次验证图的量子模拟实验的可行性,迈出了利用量子光学器件解决#P完全问题的第一步。在量子精密测量方面,团队利用量子光学芯片演示了高精度相位测量,突破了经典干涉仪的测量精度的理论极限,体现了高维量子纠缠的优势。该研究为多体高维量子纠缠体系的片上制备与量子调控技术的应用提供了重要基础。
致谢:感谢北京大学物理学院王剑威研究员团队对中文稿件的校对工作。
如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOL ( x-mol.com ), 未经许可,谢绝转载!