非共价相互作用(例如氢键、π-π堆积、CH-π、离子-π相互作用等)在超分子化学、结构生物学、材料化学等很多领域都具有极其重要的作用。这种相互作用不仅对生物大分子的结构保持具有重要影响,而且也对材料的性能起到决定性的作用,特别是对于发光材料的发光行为而言,例如人们所熟知的聚集诱导荧光淬灭效应(ACQ)就是一种主要由π-π堆积作用导致的荧光现象。为了避免ACQ在生产、生活中所产生的多种不利影响,2001年,唐本忠院士(点击查看介绍)提出了聚集诱导发光(AIE)的概念,这种荧光分子不同于传统的ACQ分子,其在溶液态下呈弱荧光或无荧光,而在固态下则表现出强荧光。AIE分子的独特性质使其在很多领域都具有重要的应用前景,例如光电、生物成像、医学等。经过系统的研究,目前科学家们普遍认为产生AIE现象的主要机理为分子运动受限(RIM)。根据该机理,人们通过多种非共价键相互作用(如氢键、CH-π相互作用)来破坏固态时分子间的π-π堆积,并限制分子的运动等手段合成了大量的AIE分子以满足不同领域的应用需求。
阴离子-π相互作用是一种新型的非共价键相互作用,1993年在实验中首次证实后就受到了科学家们的广泛关注,特别是在超分子和分子识别领域。当芳香π体系带正电时,正电荷通常可以增强阴离子在特定方向上与π体系之间的相互作用,这种由静电吸引主导的相互作用称为阴离子-π+相互作用。那么是否能够将这种新型的非共价键相互作用引入ACQ分子中,从而利用这种独特的非共价键相互作用来调控分子的固态发光,实现荧光分子从ACQ向AIE性质的转变呢?
图1. 分子结构的设计与发光特性
为此,作者首次提出了利用阴离子-π+相互作用来构建新型离子型AIE分子。研究结果表明,设计合成的四种荧光分子在包含苯基数目相同的情况下,含有正电荷的荧光分子均表现为AIE特性,而不含正电荷的荧光分子则表现为ACQ的性质(图1)。经X射线单晶衍射、光物理性质测试、理论计算、电导率等相关研究证明,含有正电荷的荧光分子中具有非常强的阴离子-π+相互作用,溶液态时,阴离子和π正离子可以自由运动;固态时,阴离子-π+相互作用可以有效阻碍分子间形成π-π相互作用,结合对阴离子与苯环的氢形成的氢键作用限制苯环的运动,从而实现分子固态时的强发光,为离子型AIE分子的设计与合成提供了一种新的策略(图2)。利用该方法得到的离子型AIE分子TriPO-PN具有免洗涤、快速靶向细胞溶酶体的特性和功能,为细胞内示踪和监控造影剂提供了新的选择。
图2. 利用阴离子-π+相互作用设计新型离子型AIE分子
相关研究结果发表在Journal of the American Chemical Society 上,课题组的博士后王建国博士和顾星桂博士为文章的共同第一作者,唐本忠院士为通讯作者。香港科技大学的林荣业教授、张鹏飞博士、郑小燕博士、陈明博士、冯海涛博士、郭子健博士以及温州大学的黄小波博士等对该工作做出了重要贡献。该研究受到国家重点基础研究发展计划(973)以及香港AoE、RGC等项目的资助。
该论文作者为:Jianguo Wang, Xinggui Gu, Pengfei Zhang, Xiaobo Huang, Xiaoyan Zheng, Ming Chen, Haitao Feng, Ryan T. K. Kwok, Jacky W. Y. Lam and Ben Zhong Tang
原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):
Ionization and Anion−π+ Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens
J. Am. Chem. Soc., 2017, 139, 16974, DOI: 10.1021/jacs.7b10150
导师介绍
唐本忠
http://www.x-mol.com/university/faculty/7059
如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOL ( x-mol.com ), 未经许可,谢绝转载!