当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafast on‐Chip Remotely‐Triggered All‐Optical Switching Based on Epsilon‐Near‐Zero Nanocomposites (Laser Photonics Rev. 11(5)/2017)
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2017-09-25 , DOI: 10.1002/lpor.201770054 Zhen Chai , Xiaoyong Hu , Feifan Wang , Chong Li , Yutian Ao , You Wu , Kebin Shi , Hong Yang , Qihuang Gong
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2017-09-25 , DOI: 10.1002/lpor.201770054 Zhen Chai , Xiaoyong Hu , Feifan Wang , Chong Li , Yutian Ao , You Wu , Kebin Shi , Hong Yang , Qihuang Gong
An on‐chip remotely‐triggered, ultralow‐power, ultrafast, and nanoscale all‐optical switch with high switching efficiency was realized in integrated photonic circuits. Extremely large optical nonlinearity enhancement associated with epsilon‐near‐zero multi‐component nanocomposite is achieved through dispersion engineering. Compared with previous reports of on‐chip direct‐triggered all‐optical switching, the threshold control intensity, 560 kW/cm2, was reduced by four orders of magnitude, while maintaining an ultrafast switching time of 15 ps. This not only paves the way for the realization of cascaded and complicated logic processing circuits and quantum solid chips, but also provides a strategy to construct photonic materials with ultrafast and large third‐order nonlinearity.
中文翻译:
基于Epsilon近零纳米复合材料的超快片上远程触发全光交换(Laser Photonics Rev.11(5)/ 2017)
在集成光子电路中实现了具有高开关效率的片上远程触发,超低功耗,超快速和纳米级全光开关。通过色散工程可以实现与ε-接近零的多组分纳米复合材料相关的极大的光学非线性增强。与以前的片上直接触发全光切换报告相比,阈值控制强度560 kW / cm 2降低了四个数量级,同时保持了15 ps的超快切换时间。这不仅为实现级联和复杂的逻辑处理电路和量子固体芯片铺平了道路,而且为构造具有超快和大三阶非线性的光子材料提供了一种策略。
更新日期:2017-09-25
中文翻译:
基于Epsilon近零纳米复合材料的超快片上远程触发全光交换(Laser Photonics Rev.11(5)/ 2017)
在集成光子电路中实现了具有高开关效率的片上远程触发,超低功耗,超快速和纳米级全光开关。通过色散工程可以实现与ε-接近零的多组分纳米复合材料相关的极大的光学非线性增强。与以前的片上直接触发全光切换报告相比,阈值控制强度560 kW / cm 2降低了四个数量级,同时保持了15 ps的超快切换时间。这不仅为实现级联和复杂的逻辑处理电路和量子固体芯片铺平了道路,而且为构造具有超快和大三阶非线性的光子材料提供了一种策略。