当前位置:
X-MOL 学术
›
Am. J. Hum. Genet.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unified Sequence-Based Association Tests Allowing for Multiple Functional Annotations and Meta-analysis of Noncoding Variation in Metabochip Data.
American Journal of Human Genetics ( IF 8.1 ) Pub Date : 2017-08-24 00:00:00 , DOI: 10.1016/j.ajhg.2017.07.011 Zihuai He 1 , Bin Xu 2 , Seunggeun Lee 3 , Iuliana Ionita-Laza 1
American Journal of Human Genetics ( IF 8.1 ) Pub Date : 2017-08-24 00:00:00 , DOI: 10.1016/j.ajhg.2017.07.011 Zihuai He 1 , Bin Xu 2 , Seunggeun Lee 3 , Iuliana Ionita-Laza 1
Affiliation
Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants inSLC22A3and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests.
中文翻译:
统一的基于序列的关联测试允许对 Metabochip 数据中的非编码变异进行多种功能注释和元分析。
人类基因组遗传变异的功能注释已取得实质性进展。将此类功能注释纳入测序研究的综合分析可以帮助发现与疾病相关的遗传变异,特别是那些功能未知且位于蛋白质编码区之外的变异。当功能注释不能预测变体的风险状态时,直接将一种功能注释作为权重纳入现有的分散和负荷测试中可能会遭受严重的功效损失。在这里,我们开发了统一的测试,可以同时利用多个功能注释,通过高效的计算技术进行综合关联分析。我们表明,当可以通过功能注释预测变异风险状态时,所提出的测试显着提高了功效。重要的是,当功能注释不能预测风险状态时,与现有的分散和负担测试相比,所提出的测试仅产生最小的功效损失,并且在某些情况下,它们甚至可以通过学习更接近潜在疾病的权重来提高功效以数据自适应的方式建立模型。这些测试可以利用测序数据的现有分散性和负荷测试的汇总统计数据来构建,因此允许对多项研究进行荟萃分析,而无需共享个体水平的数据。我们将所提出的测试应用于 Metabochip 数据中非编码稀有变异的荟萃分析,该数据涉及来自八项脂质性状研究的 12,281 名个体。通过结合特征功能评分,我们检测到 SLC22A3 中的非编码稀有变异与低密度脂蛋白和总胆固醇之间存在显着关联,而标准分散和负荷测试则忽略了这种关联。
更新日期:2017-09-21
中文翻译:
统一的基于序列的关联测试允许对 Metabochip 数据中的非编码变异进行多种功能注释和元分析。
人类基因组遗传变异的功能注释已取得实质性进展。将此类功能注释纳入测序研究的综合分析可以帮助发现与疾病相关的遗传变异,特别是那些功能未知且位于蛋白质编码区之外的变异。当功能注释不能预测变体的风险状态时,直接将一种功能注释作为权重纳入现有的分散和负荷测试中可能会遭受严重的功效损失。在这里,我们开发了统一的测试,可以同时利用多个功能注释,通过高效的计算技术进行综合关联分析。我们表明,当可以通过功能注释预测变异风险状态时,所提出的测试显着提高了功效。重要的是,当功能注释不能预测风险状态时,与现有的分散和负担测试相比,所提出的测试仅产生最小的功效损失,并且在某些情况下,它们甚至可以通过学习更接近潜在疾病的权重来提高功效以数据自适应的方式建立模型。这些测试可以利用测序数据的现有分散性和负荷测试的汇总统计数据来构建,因此允许对多项研究进行荟萃分析,而无需共享个体水平的数据。我们将所提出的测试应用于 Metabochip 数据中非编码稀有变异的荟萃分析,该数据涉及来自八项脂质性状研究的 12,281 名个体。通过结合特征功能评分,我们检测到 SLC22A3 中的非编码稀有变异与低密度脂蛋白和总胆固醇之间存在显着关联,而标准分散和负荷测试则忽略了这种关联。