当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding.
Nature Communications ( IF 14.7 ) Pub Date : 2017-08-30 , DOI: 10.1038/s41467-017-00407-9 C. J. Newcomb , N. P. Qafoku , J. W. Grate , V. L. Bailey , J. J. De Yoreo
Nature Communications ( IF 14.7 ) Pub Date : 2017-08-30 , DOI: 10.1038/s41467-017-00407-9 C. J. Newcomb , N. P. Qafoku , J. W. Grate , V. L. Bailey , J. J. De Yoreo
Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to physical isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. Here we report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities and soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that chemistry of both the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.Most molecular scale knowledge on soil organo-mineral interactions remains qualitative due to instrument limitations. Here, the authors use force spectroscopy to directly measure free binding energy between organic ligands and minerals and find that both chemistry and environmental conditions affect binding.
中文翻译:
通过量化有机矿物质结合来开发土壤有机物与矿物质相互作用的分子图。
土壤有机物的长停留时间归因于反应性矿物表面部位,该部位吸收了有机物质,并由于有机矿物质界面处的物理隔离和化学稳定作用而导致无法进入。探测该接口的工具是有限的。结果,关于有机-矿物相互作用的许多微米级和分子级的知识在很大程度上仍是定性的。在这里,我们报告了使用力谱法直接测量具有已知化学功能的有机配体与水性环境中的土壤矿物质之间的结合。通过系统地研究有机官能团化学与模型矿物的作用,我们证明了有机配体和矿物的化学作用都有助于结合自由能,并且pH和离子强度的变化在结合能上产生了显着差异。这些对分子结合的直接测量提供了对有机-矿物相互作用的机械洞察力,这可能会为明确包含矿物结合碳池的土地碳模型提供信息。由于仪器的局限性,大多数关于土壤有机-矿物相互作用的分子尺度知识仍然是定性的。在这里,作者使用力谱直接测量有机配体与矿物质之间的自由结合能,发现化学和环境条件均会影响结合。这些对分子结合的直接测量提供了对有机-矿物相互作用的机械洞察力,这可能会为明确包含矿物结合碳池的土地碳模型提供信息。由于仪器的局限性,大多数关于土壤有机-矿物相互作用的分子尺度知识仍然是定性的。在这里,作者使用力谱直接测量有机配体与矿物质之间的自由结合能,发现化学和环境条件均会影响结合。这些对分子结合的直接测量提供了对有机-矿物相互作用的机械洞察力,这可能会为明确包含矿物结合碳池的土地碳模型提供信息。由于仪器的局限性,大多数关于土壤有机-矿物相互作用的分子尺度知识仍然是定性的。在这里,作者使用力谱直接测量有机配体与矿物质之间的自由结合能,发现化学和环境条件均会影响结合。
更新日期:2017-08-30
中文翻译:
通过量化有机矿物质结合来开发土壤有机物与矿物质相互作用的分子图。
土壤有机物的长停留时间归因于反应性矿物表面部位,该部位吸收了有机物质,并由于有机矿物质界面处的物理隔离和化学稳定作用而导致无法进入。探测该接口的工具是有限的。结果,关于有机-矿物相互作用的许多微米级和分子级的知识在很大程度上仍是定性的。在这里,我们报告了使用力谱法直接测量具有已知化学功能的有机配体与水性环境中的土壤矿物质之间的结合。通过系统地研究有机官能团化学与模型矿物的作用,我们证明了有机配体和矿物的化学作用都有助于结合自由能,并且pH和离子强度的变化在结合能上产生了显着差异。这些对分子结合的直接测量提供了对有机-矿物相互作用的机械洞察力,这可能会为明确包含矿物结合碳池的土地碳模型提供信息。由于仪器的局限性,大多数关于土壤有机-矿物相互作用的分子尺度知识仍然是定性的。在这里,作者使用力谱直接测量有机配体与矿物质之间的自由结合能,发现化学和环境条件均会影响结合。这些对分子结合的直接测量提供了对有机-矿物相互作用的机械洞察力,这可能会为明确包含矿物结合碳池的土地碳模型提供信息。由于仪器的局限性,大多数关于土壤有机-矿物相互作用的分子尺度知识仍然是定性的。在这里,作者使用力谱直接测量有机配体与矿物质之间的自由结合能,发现化学和环境条件均会影响结合。这些对分子结合的直接测量提供了对有机-矿物相互作用的机械洞察力,这可能会为明确包含矿物结合碳池的土地碳模型提供信息。由于仪器的局限性,大多数关于土壤有机-矿物相互作用的分子尺度知识仍然是定性的。在这里,作者使用力谱直接测量有机配体与矿物质之间的自由结合能,发现化学和环境条件均会影响结合。