当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ostwald Ripening Improves Rate Capability of High Mass Loading Manganese Oxide for Supercapacitors
ACS Energy Letters ( IF 19.3 ) Pub Date : 2017-07-17 00:00:00 , DOI: 10.1021/acsenergylett.7b00405
Yu Song 1, 2 , Tianyu Liu 2 , Bin Yao 2 , Mingyang Li 2, 3 , Tianyi Kou 2 , Zi-Hang Huang 1, 2 , Dong-Yang Feng 1 , Fuxin Wang 3 , Yexiang Tong 3 , Xiao-Xia Liu 1 , Yat Li 2
Affiliation  

Realizing fast charging–discharging for high mass loading pseudocapacitive materials has been a great challenge in the field of supercapacitors because of the sluggish electron and ion migration kinetics through the thick electrode materials. Here we demonstrate for the first time a facile hydrothermal treatment that can substantially enhance the rate capability of a highly loaded manganese oxide electrode via the Ostwald ripening process. Hydrothermal treatment improves not only the electrical conductivity of manganese oxide but also the ion diffusion rate in the thick oxide film. At slow scan rates below 40 mV s–1, the capacitance of the hydrothermally treated manganese oxide electrode increases linearly with mass loading (up to 23.5 mg cm–2) as expected for a capacitor under the non-diffusion-limited conditions. At high scan rates beyond 100 mV s–1, capacitive saturation is observed only at a high mass loading of ∼9 mg cm–2, which is significantly greater than the values reported for other manganese oxide electrodes. The electrode achieves an areal capacitance of 618 mF cm–2 at a high scan rate of 200 mV s–1, which is 3 times greater than that of the untreated sample. An asymmetric supercapacitor assembled with a hydrothermally treated manganese oxide cathode and a vanadium oxide/exfoliated carbon cloth anode can deliver a good volumetric energy density of 5 mWh cm–3. This value is 2–10 times greater than the values obtained from supercapacitors with comparable dimensions.

中文翻译:

Ostwald熟化提高了超级电容器的大容量负载氧化锰的倍率能力

对于高容量负载的伪电容材料,要实现快速充放电一直是超级电容器领域的一项巨大挑战,因为电子和离子迁移动力学很慢,它们穿过厚的电极材料。在这里,我们首次展示了一种便捷的水热处理工艺,该工艺可以通过奥斯特瓦尔德(Ostwald)熟化工艺显着提高高负载锰氧化物电极的倍率能力。水热处理不仅改善了锰氧化物的电导率,而且还改善了厚氧化膜中的离子扩散速率。在低于40 mV s –1的慢扫描速率下,经过水热处理的氧化锰电极的电容随质量负载线性增加(最大23.5 mg cm –2),这是非扩散限制条件下电容器的预期值。在超过100 mV s –1的高扫描速率下,仅在约9 mg cm –2的高质量负载下才观察到电容饱和,该负载明显大于其他氧化锰电极的报告值。该电极在200 mV s –1的高扫描速率下可达到618 mF cm –2的面电容,这是未处理样品的3倍。由水热处理的氧化锰阴极和氧化钒/片状碳布阳极组装而成的不对称超级电容器可以提供5 mWh cm –3的良好体积能量密度。该值是从尺寸可比的超级电容器获得的值的2-10倍。
更新日期:2017-07-17
down
wechat
bug