Publications (https://scholar.google.com/citations?user=zdPf4JYAAAAJ&hl=en):
2023
Maxwell, D. C.; O’Keefe, C. A.; Xu, C.; Grey, C. P. C13 NMR study of the electronic structure of lithiated graphite. Physical Review Materials 2023, 7, DOI: 10.1103/physrevmaterials.7.065402
Ruff, Z.; Coates, C. S.; Märker, K.; Mahadevegowda, A.; Xu, C.; Penrod, M. E.; Ducati, C.; Grey, C. P. O3 to O1 Phase Transitions in Highly Delithiated NMC811 at Elevated Temperatures. Chem. Mater. 2023, 35, 4979-4987. DOI: 10.1021/acs.chemmater.3c00307
2022
Xu, C.; Merryweather, A. J.; Pandurangi, S. S.; Lun, Z. Y.; Hall, D. S.; Deshpande, V. S.; Fleck, N. A.; Schnedermann, C.; Rao, A. K.; Grey, C. P. Operando visualization of kinetically induced lithium heterogeneities in single-particle layered Ni-rich cathodes. Joule, 2022, 6, 2535-2546. DOI: 10.1016/j.joule.2022.09.008
Xu, C.; Dose, W. M.; Sole, C. G.; Thakur, P. K.; Lee, T.-L.; De Volder, M. F. L.; Grey, C. P.; Weatherup, R. S. Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi0.8Mn0.1Co0.1O2–Graphite Cells. Chem. Mater. 2022, 34, 2034-2048. DOI: 10.1021/acs.chemmater.1c02722 Björklund, E.;
Xu, C.; Tan, C.; Heenan, T. M. M.; Dimitrijevic, A.; Kleiner, K.; Grey, C. P.; Brett, D. J. L.; Tang, C. C.; Shearing, P. R.; Jervis, R. Spatially Resolved Operando Synchrotron-Based X-Ray Diffraction Measurements of Ni-Rich Cathodes for Li-Ion Batteries. Frontiers in Chemical Engineering, 2022, 3, DOI:10.3389/fceng.2021.794194 Leach, A. S.; Llewellyn, A. V.;
Prior to ShanghaiTech (Selected Publication; Full List: https://scholar.google.com/citations?user=zdPf4JYAAAAJ&hl=en )
Xu, C.; Märker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Layla Mehdi, B.; Tang, C. C.; Grey, C. P. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84-92. DOI:10.1038/s41563-020-0767-8 (Highlighted by University of Cambridge, Phys.org, EurikAlert!, ScienMag, Science Daily, Azom.com, MaterialsToday)
Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries. Adv. Energy Mater. 2021, 11, 2003404. DOI:10.1002/aenm.202003404
Xu, C.;† Hernández, G.;† Abbrent, S.; Kobera, L.; Konefal, R.; Brus, J.; Edström, K.; Brandell, D.; Mindemark, J. Unraveling and Mitigating the Storage Instability of Fluoroethylene Carbonate-Containing LiPF6 Electrolytes To Stabilize Lithium Metal Anodes for High-Temperature Rechargeable Batteries. ACS Appl. Energy Mater. 2019, 2, 4925-4935. DOI:10.1021/acsaem.9b00607 (equal contribution)
Xu, C.; Jeschull, F.; Brant, W. R.; Brandell, D.; Edström, K.; Gustafsson, T. The Role of LiTDI Additive in LiNi1/3Mn1/3Co1/3O2/Graphite Lithium-Ion Batteries at Elevated Temperatures. J. Electrochem. Soc. 2018, 165, A40-A46. DOI:10.1149/2.0231802jes
Xu, C.; Renault, S.; Ebadi, M.; Wang, Z.; Björklund, E.; Guyomard, D.; Brandell, D.; Edström, K.; Gustafsson, T. LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries. Chem. Mater. 2017, 29, 2254-2263. DOI:10.1021/acs.chemmater.6b05247
Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chem. Mater. 2015, 27, 2591-2599. DOI:10.1021/acs.chemmater.5b00339 (Highly cited paper, Essential Science IndicatorsSM)
Xu, C.; Sun, B.; Gustafsson, T.; Edström, K.; Brandell, D.; Hahlin, M. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2014, 2, 7256-7264. DOI:10.1039/c4ta00214h