5747
当前位置: 首页   >  成果及论文
成果及论文

【期刊论文】

1. 影像智能分析

[10] Z. Chen, J. Chen, J. Zhao, B. Liu,S. Jiang, D. Si, H. Ding, Y. Nian, X. Yang, J. Xiao, “What Matters in Radiological Image Segmentation? Effect of Segmentation Errors on the Diagnostic Related Features”, Journal of Digital Image, 2023  (最高影响因子:4.903).

[9] D. Si, Y. Wu, J. Xiao, X. Qin, R. Guo, B. Liu, Z. Ning, J. Yin, P. Gao, Y. Liu,  D. Yang, K. Cheng, T. Chen, Z. Cheng, X. Lin, Q. Fang, D. Herzka, H. Ding, Three-dimensional high resolution dark blood late gadolinium enhancement imaging for improved atrial scar detection,Radiology, 2023(最高影响因子:29.146).

[8] B. Xiao, Z. Yang, X. Qiu, J. Xiao, G. Wang, W. Li, Y. Nian, W.Chen, PAM-DenseNet: a deep convolutional neural network for computer-aided COVID-19 diagnosis,IEEE Transactions of Cybernetics, 52(11):12163-12174, 2022  (最高影响因子:19.118).

[7] Z. Zhang, J. Xiao, S. Wu, F. Lv, J. Gong, L. Jiang, R. Yu,  T. Luo,Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades,Journal of Digital Imaging、33(4):826-837, 2020  (最高影响因子:4.903).

[6] Y. Kuai, G. Wen, D. Li, J. Xiao, Target-Aware Correlation Filter Tracking in RGBD Videos, IEEE sensor journal,19(20): 9522-9531 ,2019  (最高影响因子:4.300).

[5] K. Li, J. Xiao, J. Yang, M. Li, X. Xiong, Y. Nian, L. Qiao, H. Wang, Y. Luo, S. Friedewald, J. Yang, S. Hu, X. Hu, Z. Zhang, J. Wang, W. Chen, “Association of Radiomic Imaging Features and Gene Expression Profile as Prognostic Factors in Pancreatic Ductal Adenocarcinoma”, American Journal of Translational Research, 11(7): 4491–4499, 2019 (最高影响因子:3.266).

[4] J. Xiao, R. Stolkin, Y. Gao, A. Leonardis. “Robust fusion of colour and depth data for RGB-D target tracking using adaptive range-invariant depth models and spatio-temporal consistency constraints”. IEEE Transactions of Cybernetics, 99: 1-15, 2017  (最高影响因子:19.118).

[3] J. Xiao, R. Stolkin, A. Leonardis. “Dynamic multi-level appearance models and adaptive clustered decision trees for single target tracking”. Pattern Recognition, 69: 169-183, 2017  (最高影响因子: 8.000).

[2] J. Xiao, R. Stolkin, M. Oussalah, A. Leonardis. “Continuously Adaptive Data Fusion and Model Relearning for Particle Filter Tracking With Multiple Features”. IEEE Sensors Journal, 16 (8):2639-2649, 2016  (最高影响因子: 4.300). 

[1] J. Xiao, M. Oussalah,“Collaborative Tracking for Multiple Objects in the Presence of Inter-occlusions". IEEE Transactions on Circuits and Systems for Video Technology, 26 (2):304-318, 2015  (最高影响因子: 8.400).


2. 临床大数据分析

[3] L. Xu*, W. Zhao*, J. He*, S. Hou, J. Xiao#Y. Qiu#,"Abdominal perfusion pressure is critical for intra-abdominal hypertension patients with multiple organ dysfunction: mortality prediction using imcomplete data.",International Journal of Surgery,2024(共同通讯,最高影响因子:15.3

[2] P. Xie; H. Wang; J. Xiao; F. Xu; J. Liu; Z. Chen; W. Zhao; S. Hou; D. Wu; Y. Ma; J. Xiao, Development and Validation of An Explainable Deep Learning Model to Predict In-hospital Mortality for Patients with Acute Myocardial Infarction: A Multicentre Study,Journal of Medical Internet Research,2024(最高影响因子:7.40)

[1] W. Zhao, Z. Chen, P. Xie, J. Liu, S. Hou, L. Xu, Y. Qiu, D. Wu, J. Xiao#,  K. He#, Multi-task Oriented Diffusion Model for Mortality Prediction in the Shock Patients with Incomplete Data,Information Fusion, 2024(共同通讯,最高影响因子: 18.6,代码:https://github.com/zha0wj/MODM


3. 生物医学信息分析

[4]  Bai F*, Shu P*, Deng H, Wu Y, Chen Y, Wu M, Ma T, Zhang Y, Pirrello J, Li Z, Hong Y, Bouzayen M+, Liu M+. A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication. Nat Commun. 2024 Apr 3;15(1):2894. doi: 10.1038/s41467-024-47292-7. PMID: 38570494; PMCID: PMC10991328. (最高影响因子:17.0)

[3P. ShuZ. Zhang, Y. Wu, Y. Chen, K. Li, H. Deng, J. Zhang, X. Zhang, J. Wang, Z. Liu, Y. Xie, K. Du, M. Li, Bouzayen, M. Hong, Y. Zhang, Y. and M. Liu, A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytol , 2023 (最高影响因子:10.32).

[2] X. LiuK. Xu, X. TaoR. Yin, G. Ren, M. Yu, C. Li, H. Chen, K. Zhao, S. Xiang, H. Gao, X. Bo, C. Chang, & X. Yang, ExpressVis: a biologist-oriented interactive web server for exploring multi-omics data. Nucleic acids research, 2022  (最高影响因子:19.16).

[1R. WangP. ShuC. Zhang, J. Zhang, Y. Chen, Y. Zhang, K. Du, Y. Xie, M. Li, T. Ma, Y. Zhang, Z. Li, Grierson, D, Pirrello, J, Chen, K, Bouzayen, M, Zhang, B, & Liu, M. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol, Sichuan University, 2022 (最高影响因子:10.32).


【会议论文】

[7P. Xie, Z. Li, Y. Ma, J. Xiao, CMRDiff: Multi-sequence CMR synthesis. International Society for Magnetic Resonance in Medicine (ISMRM), Singapore, 2024. (Oral Presentation

[6Y.Tang, Z. Kan, D. Sun, L. Qiao, J. Xiao, Z. Lai, D. Li.ADMMiRNN: Training RNN with Stable Convergence via An Efficient ADMM Approach,ECML, 2020

[5L. Liu, Y. Wang, D. Wu, Y. Zhai, L. Tan and J. Xiao, “Multitask Learning for Pathomorphology Recognition of Squamous Intraepithelial Lesion in Thinprep Cytologic Test”, ISICDM 2018 (oral presentation).

[4] J.Xiao, L. Qiao, R. Stolkin, A. Leonardis. “Distractor-supported single target tracking in extremely cluttered scenes”. ECCV, 2016.

[3] J. Xiao, R. Stolkin, A. Leonardis. “Single target tracking using adaptive clustered decision trees and dynamic multi-level appearance models”. CVPR, in U.S.A.,  2015.

[2J. Xiao, R. Stolkin, and A. Leonardis. “Multi-target tracking in team-sports videos via multi-level context-conditioned latent behaviour models”. BMVC, in U.K., 2014.

[1] J. Xiao, R. Stolkin and A. Leonardis, “An enhanced adaptive coupled-layer LGTracker++”, Visual Object Tracking Workshop, IEEE ICCV. Sydney, Australia, 1-8 December, IEEE PAMI TC Conference Travel Award, 2013.