1942
当前位置: 首页   >  研究方向
研究方向

张永臻课题组致力于发展高效、耐用的催化材料,探索其在能源、化工、环境、生命科学等领域的催化应用,剖析催化过程中的构效关系,助力实现可持续发展的社会和解决国家“卡脖子”难题。

研究方向包括但不限于以下方面:


一、发展单原子催化剂的合成方法学:

单原子催化剂独特的结构与性能优势使其具有广阔的应用前景,只有高效、大量、可控、廉价的合成,才能让单原子催化剂具备实现工业化应用的基础。

  1. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.*; Yuan, T. W.; Liu, W.; Wang. X. Q.; Cheong, W. C.; Wang, Z. Y.; Wang, X.; Zhao, C.; Yao, Y. C.; Wang, W. Y.; Zhou, F. Y.; Chen, M.; Jin, B. J.; Sun, R. B.; Liu, J.; Hong, X.; Yao, T.; Wei, S. Q.; Luo, J.*; Wu, Y. E.* Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nature Communications 202011, 335. https://doi.org/10.1038/s41467-019-14223-w
  2. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y.; Yao, T.; Liu, W.; Zheng, L. R.; Dong, J. C.; Wang, Y.; Zhuang, Z. B.; Xing, W.; He, C. T.; Peng, C.; Cheong, W. C.; Li, Q. H.; Zhang, M. L.; Chen, Z.; Fu, N. H.; Gao, X.; Zhu, W.; Wan, J. W.; Zhang, J.; Gu, L.; Wei, S. Q.; Hu, P. J.; Luo, J.; Li, J.; Chen, C.; Peng, Q.; Duan, X. F.; Huang, Y.; Chen, X. M.; Wang, D. S.*; Li, Y. D.* Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry 202012, 764-772. https://doi.org/10.1038/s41557-020-0473-9
  3. Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D.* Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science 202011, 786-790. https://doi.org/10.1039/c9sc05005a
  4. Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Wang, Y.; Lu, Y.; Wang, D. S.; Chen, C.; Peng, Q.; Liu, Y. Q.; Liu, L. M.; Chen, J. S.*; Li, Y. D.* A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society 2019141, 9305-9311. https://doi.org/10.1021/jacs.9b02936
  5. Zhou, H.; Liu, T. Y.; Zhao, X. Y.; Zhao, Y. F.; Lv, H. W.; Fang, S.; Wang, X. Q.; Zhou, F. Y.; Xu, Q.; Xu, J.; Xiong, C.; Xue, Z. G.; Wang, K.; Cheong, W. C.; Xi, W.; Gu, L.; Yao, T.; Wei, S. Q.; Hong, X.; Luo, J.*; Li, Y. F.*; Wu, Y. E.* A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie International Edition 201958, 18388-18393. https://doi.org/10.1002/anie.201912785
  6. Pan, Y.; Liu, S.; Sun, K.; Chen, X.; Wang, B.; Wu, K.; Cao, X.; Cheong, W.-C.; Shen, R.; Han, A.; Chen, Z.; Zheng, L.; Luo, J.; Lin, Y.; Liu, Y.; Wang, D.; Peng, Q.; Zhang, Q.; Chen, C.*; Li, Y. A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N4 Catalytic Site: A Superior Trifunctional Catalyst for Overall Water Splitting and Zn-Air Batteries. Angewandte Chemie International Edition 201857, 8614-8618. https://doi.org/10.1002/anie.201804349
  7. Tian, S.; Fu, Q.; Chen, W.; Feng, Q.; Chen, Z.; Zhang, J.; Cheong, W.-C.; Yu, R.; Gu, L.; Dong, J.; Luo, J.; Chen, C.; Peng, Q.; Draxl, C.; Wang, D.*; Li, Y. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications 20189, 2353. https://doi.org/10.1038/s41467-018-04845-x
  8. Wei, S.; Li, A.; Liu, J.-C.; Li, Z.*; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W.-C.; Wang, Y.; Zheng, L.; Xiao, H.; Chen, C.; Wang, D.; Peng, Q.; Gu, L.; Han, X.; Li, J.; Li, Y.* Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology 201813, 856-861. https://doi.org/10.1038/s41565-018-0197-9
  9. Zhang, J.; Wu, X.; Cheong, W.-C.; Chen, W.; Lin, R.; Li, J.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q.; Wang, D.*; Li, Y.* Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications 20189, 1002. https://doi.org/10.1038/s41467-018-03380-z
  10. Zhang, M. L.#; Wang, Y. G.#; Chen, W. X.#; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S.*; Li, Y. D.* Metal (Hydr)oxides@Polymer Core-Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society 2017139, 10976-10979. https://doi.org/10.1021/jacs.7b05372


二、单原子催化剂的结构调控:

单原子催化剂活性位点和载体结构的调控是促进其催化活性、选择性和耐用性的有力工具。

  1. Yu, K.; Sun, K. A.; Cheong, W. C. M.*; Tan, X.; He, C.; Zhang, J. Q.; Li, J. Z.; Chen, C.* Oxalate-Assisted Synthesis of  Hollow Carbon Nanocage With Fe Single Atoms for Electrochemical CO2 Reduction. Small, https://doi.org/10.1002/smll.202302611

  2. Zhao, D.*; Yu, K.; Song, P. Y.; Feng, W. Y.; Hu, B. T.; Cheong, W. C. M.; Zhuang, Z. W.; Liu, S. J.*; Sun, K. A.; Zhang, J. T.*; Chen, C.* Atomic-level engineering Fe1N2O2 interfacial structure derived from oxygen-abundant metal-organic frameworks to promote electrochemical CO2 reduction. Energy & Environmental Science 202215, 3795-3804. https://doi.org/10.1039/d2ee00878e

  3. Wang, M. M.; Zheng, X. H.; Qin, D. L.; Li, M.; Sun, K. A.; Liu, C. H.; Cheong, W. C.; Liu, Z.; Chen, Y. J.; Liu, S. J.; Wang, B.; Li, Y. P.; Liu, Y. Q.*; Liu, C. G.; Yang, X.*; Feng, X.*; Yang, C. H.; Chen, C.; Pan, Y.* Atomically Dispersed CoN3C1-TeN1C3 Diatomic Sites Anchored in N-Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction. Small 202218, 2201974. https://doi.org/10.1002/smll.202201974

  4. Hu, B. T.; Sun, K. A.; Zhuang, Z. W.; Chen, Z.; Liu, S. J.; Cheong, W. C.; Chen, C.; Hu, M. Z.; Cao, X.; Ma, J. G.; Tu, R. Y.; Zheng, X. S.; Xiao, H.; Chen, X.; Cui, Y.; Peng, Q.*; Chen, C.*; Li, Y. D.* Distinct Crystal-Facet-Dependent Behaviors for Single-Atom Palladium-On-Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. Advanced Materials 202234, 2107721. https://doi.org/10.1002/adma.202107721

  5. Liu, C. H.; Wu, Y.; Sun, K. A.; Fang, J. J.; Huang, A. J.; Pan, Y.; Cheong, W. C.; Zhuang, Z. W.; Zhuang, Z. B.; Yuan, Q. H.; Xin, H. L.; Zhang, C.; Zhang, J. W.*; Xiao, H.; Chen, C.*; Li, Y. D. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 20217, 1297-1307. https://doi.org/10.1016/j.chempr.2021.02.001

  6. Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R.; Liu, C. G.*; Wang, D. S.; Peng, Q.; Li, J.; Chen, C.* Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications 201910, 4290. https://doi.org/10.1038/s41467-019-12362-8 https://doi.org/10.1038/s41467-019-12362-8

  7. Jiao, J.#; Lin, R.#; Liu, S.#; Cheong, W.-C.#; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S.-F.; Chen, H. M.; Zheng, L.; Lu, Q.; Yang, X.; Xu, B.; Xiao, H.*; Li, J.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2Nature Chemistry 201911, 222-228. https://doi.org/10.1038/s41557-018-0201-x

  8. Chen, Y.; Ji, S.; Zhao, S.; Chen, W.; Dong, J.; Cheong, W.-C.; Shen, R.; Wen, X.; Zheng, L.; Rykov, A. I.; Cai, S.; Tang, H.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.*; Li, Y. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications 20189, 5422. https://doi.org/10.1038/s41467-018-07850-2

  9. Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; Luo, J.; Lin, Y.; Liu, Y. Q.; Liu, C. G.; Li, J.; Lu, Q.; Chen, X.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society 2018140, 4218-4221. https://doi.org/10.1021/jacs.8b00814


三、单原子与纳米催化剂在能源领域的应用研究:

近代人类文明化过度依赖化石能源,带来了一系列严峻问题和挑战。一个解决方法是增加可再生能源的使用比例,并将可再生能源存储或转化,以满足不同应用场合。

  1. Chen, X.#; Li, Y. T.#; Xing, H. L.; Fei, S. X.; Ma, L. B.; Tu, R. Y.; Huang, A. J.; Cheong, W. C.; Liu, Q. G.; Ge, R. L.; Liu, S. J.; Liu, D. M.; Wei, X. W.; Wu, K. L.*; Chen, X.*; Chen, C.* Combination of Fe(II)-induced oxygen deficiency and metal doping strategy for construction of high efficiency water oxidation electrocatalysts under industrial-scale current density. Chemical Engineering Journal 2022435, 135048. https://doi.org/10.1016/j.cej.2022.135048

  2. Gao, H. X.; Zhu, S. Q.; Kang, Y.; Dinh, D. A.; Hui, K. S.*; Bin, F.; Fan, X.; Chen, F. M.; Mahmood, A.; Geng, J. X.; Cheong, W. C. M.*; Hui, K. N.* Zeolitic Imidazolate Framework-Derived Co-Fe@NC for Rechargeable Hybrid Sodium-Air Battery with a Low Voltage Gap and Long Cycle Life. ACS Applied Energy Materials 20225, 1662-1671. https://doi.org/10.1021/acsaem.1c03073

  3. Wu, K. L.#; Sun, K. A.#; Liu, S. J.#; Cheong, W. C.; Chen, Z.; Zhang, C.; Pan, Y.*; Cheng, Y. S.; Zhuang, Z. W.; Wei, X. W.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 202180, 105467. https://doi.org/10.1016/j.nanoen.2020.105467

  4. Zhao, D.; Sun, K.; Cheong, W. C.; Zheng, L.; Zhang, C.; Liu, S.; Cao, X.; Wu, K.; Pan, Y.; Zhuang, Z.; Hu, B.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. D. Synergistically Interactive Pyridinic-N-MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chimie International Edition 202059, 8982-8990. https://doi.org/10.1002/anie.201908760

  5. Zhang, Y.; Ma, J.; Yuan, M. W.; Li, Y.; Shen, R. A.; Cheong, W. C.; Han, T.; Sun, G. B.; Chen, C.; Nan, C. Y.* The design of hollow PdO-Co3O4 nano-dodecahedrons with moderate catalytic activity for Li-O2 batteries. Chemical Communications 201955, 12683-12686. https://doi.org/10.1039/c9cc03294k

  6. Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.*; Peng, Q.*; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q.; Yu, R.; Cheong, W. C.; Cao, X.; Wu, K. L.; Sun, K. A.; Wang, D. S.; Li, J.; Li, Y. D.* Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications 201910, 4875. https://doi.org/10.1038/s41467-019-12885-0

  7. Pan, Y.#; Sun, K. A.#; Liu, S. J.#; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society 2018140, 2610-2618. https://doi.org/10.1021/jacs.7b12420


四、单原子与纳米催化剂在化工和有机合成的应用研究:

化工和精细化学品的绿色合成可以降低人类社会发展对环境的影响。

  1. Mateen, M.*; Akhtar, M. N.; Gao, L.; Cheong, W. C. M.*; Lv, S.; Zhou, Y.; Chen, Z.* Engineering electrophilic atomic Ir sites on CeO2 colloidal spheres for selectivity control in hydrogenation of α,β-unsaturated carbonyl compounds. Nano Research 202215, 7107-7115. https://doi.org/10.1007/s12274-022-4405-4

  2. Zhang, J.#; Wang, Z.#; Chen, W.; Xiong, Y.; Cheong, W.-C.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q.; Hu, P.; Wang, D. S.*; Li, Y. D.* Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. Chem 20206, 725-737. https://doi.org/10.1016/j.chempr.2019.12.021

  3. Cheong, W. C.#; Yang, W. J.#; Zhang, J.#; Li, Y.; Zhao, D.; Liu, S. J.; Wu, K. L.; Liu, Q. G.; Zhang, C.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D.* Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Interfaces 201911, 33819-33824. https://doi.org/10.1021/acsami.9b09125

  4. Hu, M.; Yang, W.; Liu, S.; Zhu, W.; Li, Y.; Hu, B.; Chen, Z.; Shen, R.; Cheong, W.-C.; Wang, Y.; Zhou, K.*; Peng, Q.; Chen, C.*; Li, Y. Topological self-template directed synthesis of multi-shelled intermetallic Ni3Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science 201910, 614-619. https://doi.org/10.1039/c8sc03178a

  5. Wu, Y.#; Chen, Z.#; Cheong, W. C.; Zhang, C.; Zheng, L. R.; Yan, W. S.; Yu, R.; Chen, C.*; Li, Y. D. Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science 201910, 5345-5352. https://doi.org/10.1039/c9sc00475k

  6. Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B.; Cao, X.; Wang, D. S.; Peng, Q.; Wang, G. X.; Chen, C.* MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2Journal of the American Chemical Society 2019141, 4086-4093. https://doi.org/10.1021/jacs.8b13579

  7. Zhao, Y.; Zhou, H.; Chen, W.; Tong, Y.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q.; Xue, Z.; Cheong, W.-C.; Jin, B.; Zhou, F.; Wang, W.; Chen, M.; Hong, X.; Dong, J.; Wei, S.; Li, Y. D.; Wu, Y. E.* Two-Step Carbothermal Welding To Access Atomically Dispersed Pd1 on Three-Dimensional Zirconia Nanonet for Direct Indole Synthesis. Journal of the American Chemical Society 2019141, 10590-10594. https://doi.org/10.1021/jacs.9b03182

  8. Hu, M.; Zhao, S.; Liu, S.; Chen, C.*; Chen, W.; Zhu, W.; Liang, C.; Cheong, W.-C.; Wang, Y.; Yu, Y.; Peng, Q.; Zhou, K.*; Li, J.; Li, Y. MOF-Confined Sub-2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as High-Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials 201830, 1801878. https://doi.org/10.1002/adma.201801878

  9. Zhang, S. L.; Han, A. J.; Zhai, Y. L.; Zhang, J.; Cheong, W. C.; Wang, D. S.*; Li, Y. D. ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: sintering- and leaching-resistant core-shell nanocatalysts. Chemical Communications 201753, 9490-9493. https://doi.org/10.1039/c7cc04926a


五、功能纳米材料的合成与性能调控:

纳米材料的功能与其组成、尺寸、物相、形貌等结构特征密切相关,挖掘其构效关系可以为他们带来新的应用。

  1. Lin, R.; Chen, H. W.; Cui, T. T.; Zhang, Z. D.; Zhou, Q. X.; Nan, L; Cheong, W. C.; Schröck, L; Ramm, V.; Ding, Q. R.; Liang, X.; Saris, S.; Wendisch, F. J.; Maier, S. A.; Fischer, R. A.; Zhu, Y. F.; Wang, D.; Cortes, E. Optimization of p-Type Cu2O Nanocube Photocatalysts Based on Electronic Effects. ACS Catalysis https://doi.org/10.1021/acscatal.3c02710

  2. Gao, H. X.#; Wang, S.#; Cheong, W. C. M.#,*; Wang, K. X.; Xu, H. F.; Huang, A. J.; Ma, J. G.; Li, J. Z.; Ip, W. F. A.; Hui, K. S.*; Dinh, D. A.; Fan, X.; Bin, F.; Chen, F. M.; Hui, K. N.* Topological defect and sp3/sp2 carbon interface derived from ZIF-8 with linker vacancies for oxygen reduction reaction. Carbon 2023203, 76-87. https://doi.org/10.1016/j.carbon.2022.10.030

  3. Mahmood, A.; He, D. Q.; Zhao, B. L.; Talib, S. H.; Cheong, W. C.; Nan, Z. A.; He, Y.; Han, D. X.*; Wang, X.*; Niu, L.* Dimensional-Transformation of Ternary-Alloy through the Manipulation of Reduction Kinetics. Advanced Functional Materials 202232, 2202639. https://doi.org/10.1002/adfm.202202639

  4. Kang, Y.; Wang, S.; Hui, K. S.*; Wu, S. X.; Dinh, D. A.; Fan, X.; Bin, F.; Chen, F. M.; Geng, J. X.; Cheong, W. C. M.*; Hui, K. N.* Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction. Nano Research 202215, 2952-2960. https://doi.org/10.1007/s12274-021-3917-7

  5. Han, T.; Cao, X.; Sun, K. A.; Peng, Q.*; Ye, C. L.; Huang, A. J.; Cheong, W. C.; Chen, Z.; Lin, R.; Zhao, D.; Tan, X.; Zhuang, Z. W.; Chen, C.*; Wang, D. S.; Li, Y. D.* Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications 202112, 4952. https://doi.org/10.1038/s41467-021-25261-8

  6. Dai, R. Y.; Cheong, W. C.; Jiao, J. Q.; Zhang, C.; Zhang, Y.; Chen, Z.*; Nan, C. Y.; Chen, C.* Optimized Self-Templating Synthesis Method for Highly Crystalline Hollow Cu2O Nanoboxes. Small Methods 20204, 2000521. https://doi.org/10.1002/smtd.202000521

  7. Cao, X.; Chen, Z.; Lin, R.; Cheong, W.-C.; Liu, S.; Zhang, J.; Peng, Q.*; Chen, C.*; Han, T.; Tong, X.; Wang, Y.; Shen, R.; Zhu, W.; Wang, D.; Li, Y.* A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nature Catalysis 20181, 704-710. https://doi.org/10.1038/s41929-018-0128-z

  8. Lin, R.; Wan, J.; Xiong, Y.; Wu, K.; Cheong, W.-C.; Zhou, G.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Quantitative Study of Charge Carrier Dynamics in Well-Defined WO3 Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. Journal of the American Chemical Society 2018140, 9078-9082. https://doi.org/10.1021/jacs.8b05293

  9. Yan, M.; Ma, X.; Yang, Y.; Wang, X.; Cheong, W.-C.; Chen, Z.; Xu, X.; Huang, Y.; Wang, S.*; Lian, C.*; Li, Y.* Biofabrication Strategy for Functional Fabrics. Nano Letters 201818, 6017-6021. https://doi.org/10.1021/acs.nanolett.8b02905

  10. Wu, K.-L.*; Cai, Y.-M.; Jiang, B.-B.; Cheong, W.-C.; Wei, X.-W.*; Wang, W.; Yu, N. Cu@Ni core-shell nanoparticles/reduced graphene oxide nanocomposites for nonenzymatic glucose sensor. RSC Advances 20177, 21128-21135. https://doi.org/10.1039/c7ra00910k

  11. Wu, K. L.*; Jiang, B. B.; Cai, Y. M.; Wei, X. W.*; Li, X. Z.; Cheong, W. C. Efficient Electrocatalyst for Glucose and Ethanol Based on Cu/Ni/N-Doped Graphene Hybrids. ChemElectroChem 20174, 1419-1428. https://doi.org/10.1002/celc.201700078

  12. Cheong, W.-C.; Liu, C.; Jiang, M.; Duan, H.; Wang, D.; Chen, C.*; Li, Y.* Free-standing palladium-nickel alloy wavy nanosheets. Nano Research 20169, 2244-2250. https://doi.org/10.1007/s12274-016-1111-0