1937
当前位置: 首页   >  成果及论文
成果及论文

2023 (3 articles)

  1. Lin, R.; Chen, H. W.; Cui, T. T.; Zhang, Z. D.; Zhou, Q. X.; Nan, L; Cheong, W. C.; Schröck, L; Ramm, V.; Ding, Q. R.; Liang, X.; Saris, S.; Wendisch, F. J.; Maier, S. A.; Fischer, R. A.; Zhu, Y. F.; Wang, D.; Cortes, E. Optimization of p-Type Cu2O Nanocube Photocatalysts Based on Electronic Effects. ACS Catalysis 2023, 13, 11352–11361. https://doi.org/10.1021/acscatal.3c02710
  2. Yu, K.; Sun, K. A.; Cheong, W. C. M.*; Tan, X.; He, C.; Zhang, J. Q.; Li, J. Z.; Chen, C.* Oxalate-Assisted Synthesis of  Hollow Carbon Nanocage With Fe Single Atoms for Electrochemical CO2 Reduction. Small 2023, 27, 2302611. https://doi.org/10.1002/smll.202302611
  3. Gao, H. X.#; Wang, S.#; Cheong, W. C. M.#,*; Wang, K. X.; Xu, H. F.; Huang, A. J.; Ma, J. G.; Li, J. Z.; Ip, W. F. A.; Hui, K. S.*; Dinh, D. A.; Fan, X.; Bin, F.; Chen, F. M.; Hui, K. N.* Topological defect and sp3/sp2 carbon interface derived from ZIF-8 with linker vacancies for oxygen reduction reaction. Carbon 2023203, 76-87. https://doi.org/10.1016/j.carbon.2022.10.030

2022 (15 articles)

  1. Zhao, D.*; Yu, K.; Song, P. Y.; Feng, W. Y.; Hu, B. T.; Cheong, W. C. M.; Zhuang, Z. W.; Liu, S. J.*; Sun, K. A.; Zhang, J. T.*; Chen, C.* Atomic-level engineering Fe1N2O2 interfacial structure derived from oxygen-abundant metal-organic frameworks to promote electrochemical CO2 reduction. Energy & Environmental Science 2022, 15, 3795-3804. https://doi.org/10.1039/d2ee00878e

  2. Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C.; Li, Z.*; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H.; Liang, X.; Fu, N. H.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D.* Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research 2022, 15, 3959-3963. https://doi.org/10.1007/s12274-022-4076-1

  3. Chen, X.#; Li, Y. T.#; Xing, H. L.; Fei, S. X.; Ma, L. B.; Tu, R. Y.; Huang, A. J.; Cheong, W. C.; Liu, Q. G.; Ge, R. L.; Liu, S. J.; Liu, D. M.; Wei, X. W.; Wu, K. L.*; Chen, X.*; Chen, C.* Combination of Fe(II)-induced oxygen deficiency and metal doping strategy for construction of high efficiency water oxidation electrocatalysts under industrial-scale current density. Chemical Engineering Journal 2022, 435, 135048. https://doi.org/10.1016/j.cej.2022.135048

  4. Gao, H. X.; Zhu, S. Q.; Kang, Y.; Dinh, D. A.; Hui, K. S.*; Bin, F.; Fan, X.; Chen, F. M.; Mahmood, A.; Geng, J. X.; Cheong, W. C. M.*; Hui, K. N.* Zeolitic Imidazolate Framework-Derived Co-Fe@NC for Rechargeable Hybrid Sodium-Air Battery with a Low Voltage Gap and Long Cycle Life. ACS Applied Energy Materials 2022, 5, 1662-1671. https://doi.org/10.1021/acsaem.1c03073

  5. Hu, B. T.; Sun, K. A.; Zhuang, Z. W.; Chen, Z.; Liu, S. J.; Cheong, W. C.; Chen, C.; Hu, M. Z.; Cao, X.; Ma, J. G.; Tu, R. Y.; Zheng, X. S.; Xiao, H.; Chen, X.; Cui, Y.; Peng, Q.*; Chen, C.*; Li, Y. D.* Distinct Crystal-Facet-Dependent Behaviors for Single-Atom Palladium-On-Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. Advanced Materials 2022, 34, 2107721. https://doi.org/10.1002/adma.202107721

  6. Kang, Y.; Wang, S.; Hui, K. S.*; Wu, S. X.; Dinh, D. A.; Fan, X.; Bin, F.; Chen, F. M.; Geng, J. X.; Cheong, W. C. M.*; Hui, K. N.* Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction. Nano Research 2022, 15, 2952-2960. https://doi.org/10.1007/s12274-021-3917-7

  7. Liu, C. H.#; Wu, Y.#; Fang, J. J.; Yu, K.; Li, H.; He, W. J.; Cheong, W. C.; Liu, S. J.; Chen, Z.; Dong, J.*; Chen, C.* Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction. Chinese Journal of Catalysis 2022, 43, 1697-1702. https://doi.org/10.1016/s1872-2067(21)64006-8

  8. Liu, X. C.#; Mateen, M.#,*; Cheng, X. K.; Wu, D. Q.; Zhang, J.; Cheong, W. C.; Liu, S. J.* Constructing atomic Co1-N4 sites in 2D polymeric carbon nitride for boosting photocatalytic hydrogen harvesting under visible light. International Journal of Hydrogen Energy 2022, 47, 12592-12604. https://doi.org/10.1016/j.ijhydene.2022.02.012

  9. Mahmood, A.; He, D. Q.; Zhao, B. L.; Talib, S. H.; Cheong, W. C.; Nan, Z. A.; He, Y.; Han, D. X.*; Wang, X.*; Niu, L.* Dimensional-Transformation of Ternary-Alloy through the Manipulation of Reduction Kinetics. Advanced Functional Materials 2022, 32, 2202639. https://doi.org/10.1002/adfm.202202639

  10. Mahmood, A.; Zhao, B. L.; Javed, M. S.*; He, D. Q.; Cheong, W. C.; Han, D. X.*; Niu, L.* Unprecedented Dual Role of Polyaniline for Enhanced Pseudocapacitance of Cobalt-Iron Layered Double Hydroxide. Macromolecular Rapid Communications 2022, 43, 2100905. https://doi.org/10.1002/marc.202100905

  11. Mateen, M.*; Akhtar, M. N.; Gao, L.; Cheong, W. C. M.*; Lv, S.; Zhou, Y.; Chen, Z.* Engineering electrophilic atomic Ir sites on CeO2 colloidal spheres for selectivity control in hydrogenation of α,β-unsaturated carbonyl compounds. Nano Research 2022, 15, 7107-7115. https://doi.org/10.1007/s12274-022-4405-4

  12. Pan, Y.; Ma, X. L.; Wang, M. M.; Yang, X.; Liu, S. J.; Chen, H. C.; Zhuang, Z. W.; Zhang, Y. H.; Cheong, W. C.; Zhang, C.; Cao, X.; Shen, R. A.; Xu, Q.; Zhu, W.; Liu, Y. Q.; Wang, X. D.; Zhang, X. J.; Yan, W. S.; Li, J.; Chen, H. M.*; Chen, C.*; Li, Y. D. Construction of N, P Co-Doped Carbon Frames Anchored with Fe Single Atoms and Fe2P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials 2022, 34, 2203621. https://doi.org/10.1002/adma.202203621

  13. Shah, K.; Dai, R. Y.; Mateen, M.; Hassan, Z.; Zhuang, Z. W.; Liu, C. H.; Israr, M.; Cheong, W. C.; Hu, B. T.; Tu, R. Y.; Zhang, C.; Chen, X.*; Peng, Q.; Chen, C.*; Li, Y. D. Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angewandte Chemie International Edition 2022, 61, e202114951. https://doi.org/10.1002/anie.202114951

  14. Wang, M. M.; Zheng, X. H.; Qin, D. L.; Li, M.; Sun, K. A.; Liu, C. H.; Cheong, W. C.; Liu, Z.; Chen, Y. J.; Liu, S. J.; Wang, B.; Li, Y. P.; Liu, Y. Q.*; Liu, C. G.; Yang, X.*; Feng, X.*; Yang, C. H.; Chen, C.; Pan, Y.* Atomically Dispersed CoN3C1-TeN1C3 Diatomic Sites Anchored in N-Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction. Small 2022, 18, 2201974. https://doi.org/10.1002/smll.202201974

  15. Zhao, J. B.*; Yuan, H. F.; Guang, Y.; Liu, Y. F.; Qin, X. M.; Zheng, C.*; Cheong, W. C.; Zhou, L. M.; Fang, S. M.* AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Research 2022, 15, 1796-1802. https://doi.org/10.1007/s12274-021-3732-1


2021 (8 articles)

  1. Liu, C. H.; Wu, Y.; Sun, K. A.; Fang, J. J.; Huang, A. J.; Pan, Y.; Cheong, W. C.; Zhuang, Z. W.; Zhuang, Z. B.; Yuan, Q. H.; Xin, H. L.; Zhang, C.; Zhang, J. W.*; Xiao, H.; Chen, C.*; Li, Y. D. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 2021, 7, 1297-1307. https://doi.org/10.1016/j.chempr.2021.02.001

  2. Du, X. Y.; Guo, J. L.; Chen, M. P.; Cheong, W. C.; Chen, Y. Y.; Liu, D.; Chen, S.; Wang, X. S.; Lo, K. H.*; Hu, J. S.; Pan, H.* Surface reconstruction on silver nanoparticles decorated trimetallic hydroxide nanosheets to generate highly active oxygen-deficient (oxy)hydroxide layer for high-efficient water oxidation. Chemical Engineering Journal 2021, 425, 135048. https://doi.org/10.1016/j.cej.2021.131662

  3. Han, T.; Cao, X.; Sun, K. A.; Peng, Q.*; Ye, C. L.; Huang, A. J.; Cheong, W. C.; Chen, Z.; Lin, R.; Zhao, D.; Tan, X.; Zhuang, Z. W.; Chen, C.*; Wang, D. S.; Li, Y. D.* Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications 2021, 12, 4952. https://doi.org/10.1038/s41467-021-25261-8

  4. Han, X.#; Chen, Z.#; Chen, W. X.#; Lv, C. L.; Ji, Y. J.; Li, J.; Cheong, W. C.; Lei, X. J.; Peng, Q.; Chen, C.; Wang, D. S.; Lian, C.*; Li, Y. D.* A general strategy to prepare atomically dispersed biomimetic catalysts based on host-guest chemistry. Chemical Communications 2021, 57, 1895-1898. https://doi.org/10.1039/d0cc07119f

  5. Jiang, B. B.; Cheong, W. C.; Tu, R. Y.; Sun, K.; Liu, S. J.; Wu, K. L.*; Shang, H. S.; Huang, A. J.*; Wang, M.; Zheng, L. R.; Wei, X. W.; Chen, C.* Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Science China-Materials 2021, 64, 2729-2738. https://doi.org/10.1007/s40843-021-1678-y

  6. Ling, M.; Jiang, B. B.; Cao, X.; Wu, T.; Cheng, Y. S.; Zeng, P. Y.; Zhang, L.; Cheong, W. C. M.; Wu, K. L.*; Huang, A. J.*; Wei, X. W.* Phase-Controllable Synthesis of Multifunctional 1T-MoSe2 Nanostructures: Applications in Lithium-Ion Batteries, Electrocatalytic Hydrogen Evolution, and the Hydrogenation Reaction. ChemElectroChem 2021, 8, 4148-4155. https://doi.org/10.1002/celc.202101146

  7. Wu, K. L.; Ling, M.; Zeng, P. Y.; Zhang, L.; Wu, T.; Guan, P. L.; Cheong, W. C.; Chen, Z.*; Fang, Z.; Wei, X. W.* Self-assembled multifunctional Fe3O4 hierarchical microspheres: high-efficiency lithium-ion battery materials and hydrogenation catalysts. Science China-Materials 2021, 64, 1058-1070. https://doi.org/10.1007/s40843-020-1526-0

  8. Wu, K. L.#; Sun, K. A.#; Liu, S. J.#; Cheong, W. C.; Chen, Z.; Zhang, C.; Pan, Y.*; Cheng, Y. S.; Zhuang, Z. W.; Wei, X. W.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467. https://doi.org/10.1016/j.nanoen.2020.105467


2020 (10 articles)

  1. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.*; Yuan, T. W.; Liu, W.; Wang. X. Q.; Cheong, W. C.; Wang, Z. Y.; Wang, X.; Zhao, C.; Yao, Y. C.; Wang, W. Y.; Zhou, F. Y.; Chen, M.; Jin, B. J.; Sun, R. B.; Liu, J.; Hong, X.; Yao, T.; Wei, S. Q.; Luo, J.*; Wu, Y. E.* Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nature Communications 2020, 11, 335. https://doi.org/10.1038/s41467-019-14223-w

  2. Dai, R. Y.; Cheong, W. C.; Jiao, J. Q.; Zhang, C.; Zhang, Y.; Chen, Z.*; Nan, C. Y.; Chen, C.* Optimized Self-Templating Synthesis Method for Highly Crystalline Hollow Cu2O Nanoboxes. Small Methods 2020, 4, 2000521. https://doi.org/10.1002/smtd.202000521

  3. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y.; Yao, T.; Liu, W.; Zheng, L. R.; Dong, J. C.; Wang, Y.; Zhuang, Z. B.; Xing, W.; He, C. T.; Peng, C.; Cheong, W. C.; Li, Q. H.; Zhang, M. L.; Chen, Z.; Fu, N. H.; Gao, X.; Zhu, W.; Wan, J. W.; Zhang, J.; Gu, L.; Wei, S. Q.; Hu, P. J.; Luo, J.; Li, J.; Chen, C.; Peng, Q.; Duan, X. F.; Huang, Y.; Chen, X. M.; Wang, D. S.*; Li, Y. D.* Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry 2020, 12, 764-772. https://doi.org/10.1038/s41557-020-0473-9

  4. Wang, W. Z.*; Cao, H. H.; Li, W.; Wu, J. Y.; Sheng, E. H.; Chen, Z.; Cheong, W. C.; Wu, K. L.* In situ growth of MoSe2 nanosheets array on Mo foil: An efficient and durable hydrogen evolution electrocatalyst. Materials Letters 2020, 272, 127828. https://doi.org/10.1016/j.matlet.2020.127828

  5. Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D.* Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science 2020, 11, 786-790. https://doi.org/10.1039/c9sc05005a

  6. Wu, K. L.#; Zhan, F.#; Tu, R. Y.; Cheong, W. C.; Cheng, Y. S.; Zheng, L. R.; Yan, W. S.; Zhang, Q. H.; Chen, Z.*; Chen, C.* Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications 2020, 56, 8916-8919. https://doi.org/10.1039/d0cc03620j

  7. Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q.; Li, B. J.; Wang, D. S.*; Li, Y. D. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China-Materials 2020, 63, 972-981. https://doi.org/10.1007/s40843-020-1334-6

  8. Zhang, J.#; Wang, Z.#; Chen, W.; Xiong, Y.; Cheong, W.-C.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q.; Hu, P.; Wang, D. S.*; Li, Y. D.* Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. Chem 2020, 6, 725-737. https://doi.org/10.1016/j.chempr.2019.12.021

  9. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P.; Wang, D. S.; Li, Y. D. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research 2020, 13, 3082-3087. https://doi.org/10.1007/s12274-020-2977-4

  10. Zhao, D.; Sun, K.; Cheong, W. C.; Zheng, L.; Zhang, C.; Liu, S.; Cao, X.; Wu, K.; Pan, Y.; Zhuang, Z.; Hu, B.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. D. Synergistically Interactive Pyridinic-N-MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chimie International Edition 2020, 59, 8982-8990. https://doi.org/10.1002/anie.201908760


2019 (16 articles)

  1. Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R.; Liu, C. G.*; Wang, D. S.; Peng, Q.; Li, J.; Chen, C.* Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications 2019, 10, 4290. https://doi.org/10.1038/s41467-019-12362-8 https://doi.org/10.1038/s41467-019-12362-8
  2. Cheong, W. C.#; Yang, W. J.#; Zhang, J.#; Li, Y.; Zhao, D.; Liu, S. J.; Wu, K. L.; Liu, Q. G.; Zhang, C.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D.* Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Interfaces 2019, 11, 33819-33824. https://doi.org/10.1021/acsami.9b09125

  3. Hu, M.; Yang, W.; Liu, S.; Zhu, W.; Li, Y.; Hu, B.; Chen, Z.; Shen, R.; Cheong, W.-C.; Wang, Y.; Zhou, K.*; Peng, Q.; Chen, C.*; Li, Y. Topological self-template directed synthesis of multi-shelled intermetallic Ni3Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science 2019, 10, 614-619. https://doi.org/10.1039/c8sc03178a

  4. Ji, S. F.; Chen, Y. J.; Zhang, Z. D.; Cheong, W. C.; Liu, Z. R.; Wang, D. S.*; Li, Y. D. Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. Nanoscale Horizons 2019, 4, 902-906. https://doi.org/10.1039/c9nh00036d

  5. Jiao, J.#; Lin, R.#; Liu, S.#; Cheong, W.-C.#; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S.-F.; Chen, H. M.; Zheng, L.; Lu, Q.; Yang, X.; Xu, B.; Xiao, H.*; Li, J.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry 2019, 11, 222-228. https://doi.org/10.1038/s41557-018-0201-x

  6. Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X.; Zhuang, Z. B.; Yu, R.; Xiao, H.*; Li, J.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research 2019, 12, 2866-2871. https://doi.org/10.1007/s12274-019-2526-1

  7. Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Wang, Y.; Lu, Y.; Wang, D. S.; Chen, C.; Peng, Q.; Liu, Y. Q.; Liu, L. M.; Chen, J. S.*; Li, Y. D.* A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society 2019, 141, 9305-9311. https://doi.org/10.1021/jacs.9b02936

  8. Pan, Y.; Sun, K.; Lin, Y.; Cao, X.; Cheng, Y.; Liu, S.; Zeng, L.; Cheong, W.-C.; Zhao, D.; Wu, K.; Liu, Z.; Liu, Y.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411-419. https://doi.org/10.1016/j.nanoen.2018.11.034

  9. Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.*; Peng, Q.*; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research 2019, 12, 1625-1630. https://doi.org/10.1007/s12274-018-2404-x

  10. Wu, Y.#; Chen, Z.#; Cheong, W. C.; Zhang, C.; Zheng, L. R.; Yan, W. S.; Yu, R.; Chen, C.*; Li, Y. D. Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science 2019, 10, 5345-5352. https://doi.org/10.1039/c9sc00475k

  11. Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.*; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur co-doped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Applied Catalysis B-Environmental 2019, 254, 186-193. https://doi.org/10.1016/j.apcatb.2019.04.096

  12. Zhang, Y.; Ma, J.; Yuan, M. W.; Li, Y.; Shen, R. A.; Cheong, W. C.; Han, T.; Sun, G. B.; Chen, C.; Nan, C. Y.* The design of hollow PdO-Co3O4 nano-dodecahedrons with moderate catalytic activity for Li-O2 batteries. Chemical Communications 2019, 55, 12683-12686. https://doi.org/10.1039/c9cc03294k

  13. Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B.; Cao, X.; Wang, D. S.; Peng, Q.; Wang, G. X.; Chen, C.* MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. Journal of the American Chemical Society 2019, 141, 4086-4093. https://doi.org/10.1021/jacs.8b13579

  14. Zhao, Y.; Zhou, H.; Chen, W.; Tong, Y.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q.; Xue, Z.; Cheong, W.-C.; Jin, B.; Zhou, F.; Wang, W.; Chen, M.; Hong, X.; Dong, J.; Wei, S.; Li, Y. D.; Wu, Y. E.* Two-Step Carbothermal Welding To Access Atomically Dispersed Pd1 on Three-Dimensional Zirconia Nanonet for Direct Indole Synthesis. Journal of the American Chemical Society 2019, 141, 10590-10594. https://doi.org/10.1021/jacs.9b03182

  15. Zhou, H.; Liu, T. Y.; Zhao, X. Y.; Zhao, Y. F.; Lv, H. W.; Fang, S.; Wang, X. Q.; Zhou, F. Y.; Xu, Q.; Xu, J.; Xiong, C.; Xue, Z. G.; Wang, K.; Cheong, W. C.; Xi, W.; Gu, L.; Yao, T.; Wei, S. Q.; Hong, X.; Luo, J.*; Li, Y. F.*; Wu, Y. E.* A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie International Edition 2019, 58, 18388-18393. https://doi.org/10.1002/anie.201912785

  16. Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.*; Peng, Q.*; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q.; Yu, R.; Cheong, W. C.; Cao, X.; Wu, K. L.; Sun, K. A.; Wang, D. S.; Li, J.; Li, Y. D.* Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications 2019, 10, 4875. https://doi.org/10.1038/s41467-019-12885-0


2018 (17 articles)

  1. Cao, X.; Chen, Z.; Lin, R.; Cheong, W.-C.; Liu, S.; Zhang, J.; Peng, Q.*; Chen, C.*; Han, T.; Tong, X.; Wang, Y.; Shen, R.; Zhu, W.; Wang, D.; Li, Y.* A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nature Catalysis 2018, 1, 704-710. https://doi.org/10.1038/s41929-018-0128-z
  2. Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.-C.; Mao, J.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.*; Peng, Q.; Wang, D.; Li, Y. Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials 2018, 30https://doi.org/10.1002/adma.201800396

  3. Chen, Y.; Ji, S.; Zhao, S.; Chen, W.; Dong, J.; Cheong, W.-C.; Shen, R.; Wen, X.; Zheng, L.; Rykov, A. I.; Cai, S.; Tang, H.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.*; Li, Y. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications 2018, 9, 5422. https://doi.org/10.1038/s41467-018-07850-2

  4. Hu, M.; Zhao, S.; Liu, S.; Chen, C.*; Chen, W.; Zhu, W.; Liang, C.; Cheong, W.-C.; Wang, Y.; Yu, Y.; Peng, Q.; Zhou, K.*; Li, J.; Li, Y. MOF-Confined Sub-2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as High-Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials 2018, 30, 1801878. https://doi.org/10.1002/adma.201801878

  5. Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.*; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W.-C.; Shen, R.; Fu, N.; Gu, L.; Zhuang, Z.; Chen, C.; Wang, D.; Peng, Q.; Li, J.; Li, Y.* Fe Isolated Single Atoms on S, N Co-doped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials 2018, 30, 1800588. https://doi.org/10.1002/adma.201800588

  6. Lin, R.; Wan, J.; Xiong, Y.; Wu, K.; Cheong, W.-C.; Zhou, G.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Quantitative Study of Charge Carrier Dynamics in Well-Defined WO3 Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. Journal of the American Chemical Society 2018, 140, 9078-9082. https://doi.org/10.1021/jacs.8b05293

  7. Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; Luo, J.; Lin, Y.; Liu, Y. Q.; Liu, C. G.; Li, J.; Lu, Q.; Chen, X.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society 2018, 140, 4218-4221. https://doi.org/10.1021/jacs.8b00814

  8. Pan, Y.; Liu, S.; Sun, K.; Chen, X.; Wang, B.; Wu, K.; Cao, X.; Cheong, W.-C.; Shen, R.; Han, A.; Chen, Z.; Zheng, L.; Luo, J.; Lin, Y.; Liu, Y.; Wang, D.; Peng, Q.; Zhang, Q.; Chen, C.*; Li, Y. A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N4 Catalytic Site: A Superior Trifunctional Catalyst for Overall Water Splitting and Zn-Air Batteries. Angewandte Chemie International Edition 2018, 57, 8614-8618. https://doi.org/10.1002/anie.201804349

  9. Pan, Y.#; Sun, K. A.#; Liu, S. J.#; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q.; Wang, D. S.; Peng, Q.; Chen, C.*; Li, Y. D. Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society 2018, 140, 2610-2618. https://doi.org/10.1021/jacs.7b12420

  10. Tian, S.; Fu, Q.; Chen, W.; Feng, Q.; Chen, Z.; Zhang, J.; Cheong, W.-C.; Yu, R.; Gu, L.; Dong, J.; Luo, J.; Chen, C.; Peng, Q.; Draxl, C.; Wang, D.*; Li, Y. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications 2018, 9, 2353. https://doi.org/10.1038/s41467-018-04845-x

  11. Wei, S.; Li, A.; Liu, J.-C.; Li, Z.*; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W.-C.; Wang, Y.; Zheng, L.; Xiao, H.; Chen, C.; Wang, D.; Peng, Q.; Gu, L.; Han, X.; Li, J.; Li, Y.* Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology 2018, 13, 856-861. https://doi.org/10.1038/s41565-018-0197-9

  12. Wu, K.; Chen, X.; Liu, S.; Pan, Y.; Cheong, W.-C.; Zhu, W.; Cao, X.; Shen, R.; Chen, W.; Luo, J.; Yan, W.; Zheng, L.; Chen, Z.; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research 2018, 11, 6260-6269. https://doi.org/10.1007/s12274-018-2149-y

  13. Wu, K.#; Chen, Z.#; Cheong, W.-C.#; Liu, S.; Zhu, W.; Cao, X.; Sun, K.; Lin, Y.; Zheng, L.; Yan, W.; Pan, Y.*; Wang, D.; Peng, Q.; Chen, C.*; Li, Y. Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces 2018, 10, 44201-44208. https://doi.org/10.1021/acsami.8b14889

  14. Yan, M.; Ma, X.; Yang, Y.; Wang, X.; Cheong, W.-C.; Chen, Z.; Xu, X.; Huang, Y.; Wang, S.*; Lian, C.*; Li, Y.* Biofabrication Strategy for Functional Fabrics. Nano Letters 2018, 18, 6017-6021. https://doi.org/10.1021/acs.nanolett.8b02905

  15. Zhang, D. Y.#; Chen, W. X.#; Li, Z.*; Chen, Y. J.; Zheng, L. R.; Gong, Y.; Li, Q. H.; Shen, R. A.; Han, Y. H.; Cheong, W. C.; Gu, L.; Li, Y. D.* Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chemical Communications 2018, 54, 4274-4277. https://doi.org/10.1039/c8cc00988k

  16. Zhang, J.; Wu, X.; Cheong, W.-C.; Chen, W.; Lin, R.; Li, J.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q.; Wang, D.*; Li, Y.* Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications 2018, 9, 1002. https://doi.org/10.1038/s41467-018-03380-z

  17. Ahmad, M.; Khan, M. A.*; Mahmood, A.; Liu, S. S.; Chughtai, A. H.; Cheong, W. C.; Akram, B.; Nasar, G. Role of ytterbium on structural and magnetic properties of NiCr0.1Fe1.9O4 co-precipitated ferrites. Ceramics International 201844, 5433-5439. https://doi.org/10.1016/j.ceramint.2017.12.173


2017 (7 articles)

  1. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C.; Lu, S. Q.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S.*; Li, Y. D.* Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie International Edition 2017, 56, 16086-16090. https://doi.org/10.1002/anie.201710599

  2. Han, Y. H.#; Wang, Y. G.#; Chen, W. X.#; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C.; Chen, C.; Peng, Q.; Wang, D. S.*; Li, Y. D.* Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society 2017, 139, 17269-17272. https://doi.org/10.1021/jacs.7b10194

  3. Wu, K.-L.*; Cai, Y.-M.; Jiang, B.-B.; Cheong, W.-C.; Wei, X.-W.*; Wang, W.; Yu, N. Cu@Ni core-shell nanoparticles/reduced graphene oxide nanocomposites for nonenzymatic glucose sensor. RSC Advances 2017, 7, 21128-21135. https://doi.org/10.1039/c7ra00910k

  4. Wu, K. L.*; Jiang, B. B.; Cai, Y. M.; Wei, X. W.*; Li, X. Z.; Cheong, W. C. Efficient Electrocatalyst for Glucose and Ethanol Based on Cu/Ni/N-Doped Graphene Hybrids. ChemElectroChem 2017, 4, 1419-1428. https://doi.org/10.1002/celc.201700078

  5. Zhang, M. L.#; Wang, Y. G.#; Chen, W. X.#; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S.*; Li, Y. D.* Metal (Hydr)oxides@Polymer Core-Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society 2017, 139, 10976-10979. https://doi.org/10.1021/jacs.7b05372

  6. Zhang, S. L.; Han, A. J.; Zhai, Y. L.; Zhang, J.; Cheong, W. C.; Wang, D. S.*; Li, Y. D. ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: sintering- and leaching-resistant core-shell nanocatalysts. Chemical Communications 2017, 53, 9490-9493. https://doi.org/10.1039/c7cc04926a

  7. Zubair, A.; Ahmad, Z.; Mahmood, A.; Cheong, W. C.; Ali, I.; Khan, M. A.*; Chughtai, A. H.; Ashiq, M. N. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results in Physics 2017, 7, 3203-3208. https://doi.org/10.1016/j.rinp.2017.08.035


2016 (1 article)

  1. Cheong, W.-C.; Liu, C.; Jiang, M.; Duan, H.; Wang, D.; Chen, C.*; Li, Y.* Free-standing palladium-nickel alloy wavy nanosheets. Nano Research 2016, 9, 2244-2250. https://doi.org/10.1007/s12274-016-1111-0


2015 (1 article)

  1. Feng, Q.; Wang, W.; Cheong, W.-C.; Wang, D.; Peng, Q.; Li, J.*; Chen, C.*; Li, Y. Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd-thiolate cluster. Science China-Materials 2015, 58, 936-943. https://doi.org/10.1007/s40843-015-0109-3