15387
当前位置: 首页   >  成果及论文
成果及论文

期刊论文

2024

35. Xie, H.#; Zhang, Y.#; Liu, P.#; Duo, X.; Hu, Z.; Yu, J.; Wang, Z.; Yao, G.; Feng, L.; Huang, X.*; Ouyang, R.*; Wang, Y.*  Rb-Doped Perovskite Oxides: Surface Enrichment and Structural Reconstruction During the Oxygen Evolution Reaction. Small, 2024,  https://doi.org/10.1002/smll.202400668

Description unavailable

34. Li, Z.; Hu, Z.; Wang, Y.; Ouyang, R.*, Molecular Dynamics Simulation of Co–Fe-Based Perovskite Oxide/Water Interfaces. J. Phys. Chem. C2024, https://pubs.acs.org/doi/10.1021/acs.jpcc.4c03394

33. Zhang, P.; Fan, J.; Wang, Y.*; Dang, Y.; Heumann, S.*; Ding, Y.*, Insights into the role of defects on the Raman spectroscopy of carbon nanotube and biomass-derived carbon. Carbon, 2024, 118998. https://doi.org/10.1016/j.carbon.2024.118998

32. Shi, N.; Ma, R.; Lin, L.; Xie, W.; Liu, P.; Li, P.; Fan, H.; Tang, Y.; Wang, Y.; Lin, S.*; Huang, X.*, In-situ derived defective Ru particles anchored on Ru-Ni layered double hydroxides for enhanced alkaline hydrogen evolution. Small, 2024, 2311076. https://onlinelibrary.wiley.com/doi/10.1002/smll.202311076

2023

31. Erdem, E.; Tarasov, A.; Kube, P.; Koch, G.; Plodinec, M.; Lunkenbein, T.; Carey, S.; Wang, Y.; Hävecker, M.; Rosowski, F.; Schlögl, R.; Trunschke, A.*, The Influence of Melting on Catalysis in Propane Oxidation. ChemCatChem 2023, e202301242. https://doi.org/10.1002/cctc.202301242

30. Hu, Z.; Yan, Q.; Wang, Y.*, Dynamic surface reconstruction of perovskite oxides in oxygen evolution reaction and its impacts on catalysis: A critical reviewMaterials Today Chemistry 2023, 34, 101800. https://doi.org/10.1016/j.mtchem.2023.101800

29. Li, Y.;  Zhu, R.;  Wang, Y*.;  Feng, L.*; Liu, Y.*, Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides. NPJ Computational Materials 2023, 9 (1), 109. https://doi.org/10.1038/s41524-023-01068-7

28. Wang, J.#, Xie, H.#Wang, Y.*, Ouyang, R.*, Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalysts. J. Am. Chem. Soc. 2023. https://doi.org/10.1021/jacs.3c03493

27. Wang, J.#Xie, H.#Wang, Y.*, Ouyang, R.*, Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalystshttps://doi.org/10.48550/arXiv.2301.06884

2022

26.      Wang, Y.;  Rosowski, F.;  Schlögl, R.; Trunschke, A., Oxygen Exchange on Vanadium Pentoxide. The Journal of Physical Chemistry C 2022, 126 (7), 3443–3456http://doi.org/10.1021/acs.jpcc.2c00174 (supplementary cover)


2011-2020

25.      Werny, M. J.;  Wang, Y.;  Girgsdies, F.;  Schloegl, R.; Trunschke, A., Fluctuating Storage of the Active Phase in a Mn-Na2WO4/SiO2 Catalyst for the Oxidative Coupling of MethaneAngewandte Chemie-International Edition 202059 (35), 14921-14926.  https://doi.org/10.1002/anie.202004778

24.      Wang, Y.*;  Hayashi, T.;  He, D.;  Li, Y.;  Jin, F.; Nakamura, R.*, A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B-Environmental 2020, 264 https://doi.org/10.1016/j.apcatb.2019.118495

23.      Trunschke, A.;  Bellini, G.;  Boniface, M.;  Carey, S. J.;  Dong, J.;  Erdem, E.;  Foppa, L.;  Frandsen, W.;  Geske, M.;  Ghiringhelli, L. M.;  Girgsdies, F.;  Hanna, R.;  Hashagen, M.;  Haevecker, M.;  Huff, G.;  Knop-Gericke, A.;  Koch, G.;  Kraus, P.;  Kroehnert, J.;  Kube, P.;  Lohr, S.;  Lunkenbein, T.;  Masliuk, L.;  d'Alnoncourt, R. N.;  Omojola, T.;  Pratsch, C.;  Richter, S.;  Rohner, C.;  Rosowski, F.;  Ruether, F.;  Scheffler, M.;  Schloegl, R.;  Tarasov, A.;  Teschner, D.;  Timpe, O.;  Trunschke, P.;  Wang, Y.; Wrabetz, S., Towards Experimental Handbooks in CatalysisTopics in Catalysis 2020 https://doi.org/10.1007/s11244-020-01380-2

22.      Koch, G.;  Haevecker, M.;  Teschner, D.;  Carey, S. J.;  Wang, Y.;  Kube, P.;  Hetaba, W.;  Lunkenbein, T.;  Auffermann, G.;  Timpe, O.;  Rosowski, F.;  Schloegl, R.; Trunschke, A., Surface Conditions That Constrain Alkane Oxidation on PerovskitesACS Catalysis 2020, 10 (13), 7007-7020.  https://doi.org/10.1021/acscatal.0c01289

21.      Thum, L.;  Rudolph, M.;  Schomaecker, R.;  Wang, Y.;  Tarasov, A.;  Trunschke, A.; Schloegl, R., Oxygen Activation in Oxidative Coupling of Methane on Calcium OxideJournal of Physical Chemistry C 2019, 123 (13), 8018-8026.  https://doi.org/10.1021/acs.jpcc.8b07391

20.      Li, X.;  Teschner, D.;  Streibel, V.;  Lunkenbein, T.;  Masliuk, L.;  Fu, T.;  Wang, Y.;  Jones, T.;  Seitz, F.;  Girgsdies, F.;  Rosowski, F.;  Schloegl, R.; Trunschke, A., How to control selectivity in alkane oxidation? Chemical Science 2019, 10 (8), 2429-2443.  https://doi.org/10.1039/c8sc04641g

19.      Fu, T.;  Wang, Y.;  Wernbacher, A.;  Schloegl, R.; Trunschke, A., Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane OxidationACS Catalysis 2019, 9 (6), 4875-4886.  https://doi.org/10.1021/acscatal.9b00326

18.      Amakawa, K.;  Wang, Y.;  Kroehnert, J.;  Schloegl, R.; Trunschke, A., Acid sites on silica-supported molybdenum oxides probed by ammonia adsorbtion: Experiment and theoryMolecular Catalysis 2019, 478 https://doi.org/10.1016/j.mcat.2019.110580

17.      Wang, Y.;  Wang, F.;  Li, C.; Jin, F., Kinetics and mechanism of reduction of CO2 by glycerol under alkaline hydrothermal conditionsInternational Journal of Hydrogen Energy 2016, 41 (21), 9128-9134.  https://doi.org/10.1016/j.ijhydene.2016.02.009

16.    Ooka, H.;  Wang, Y.;  Yamaguchi, A.;  Hatakeyama, M.;  Nakamura, S.;  Hashimoto, K.; Nakamura, R., Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopyPhysical Chemistry Chemical Physics 2016, 18 (22), 15199-15204.  https://doi.org/10.1039/c6cp02385a

15.    Duo, J.;  Jin, F.*;  Wang, Y.*;  Zhong, H.;  Lyu, L.;  Yao, G.; Huo, Z., NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acidChemical Communications 2016, 52 (16), 3316-3319.  https://doi.org/10.1039/c5cc09611a

14.    Wang, Y.;  Hatakeyama, M.;  Ogata, K.;  Wakabayashi, M.;  Jin, F.; Nakamura, S., Activation of CO2 by ionic liquid EMIM-BF4 in the electrochemical system: a theoretical studyPhysical Chemistry Chemical Physics 2015, 17 (36), 23521-23531.  https://doi.org/10.1039/c5cp02008e

13.    Wang, J.;  Yao, G.;  Wang, Y.;  Zhang, H.;  Huo, Z.; Jin, F., A novel Pd/C-catalyzed conversion of glucose to 1,2-propanediol by water splitting with ZnRSC Advances 2015, 5 (63), 51435-51439.  https://doi.org/10.1039/c5ra08482b

12.    Ogata, K.;  Hatakeyama, M.;  Jin, F.;  Zeng, X.;  Wang, Y.;  Fujii, K.; Nakamura, S., A model study of hydrothermal reactions of trigonal dipyramidal Zn-5 cluster with two water moleculesComputational and Theoretical Chemistry 2015, 1070, 126-131.  https://doi.org/10.1016/j.comptc.2015.07.029

11.    Zeng, X.;  Hatakeyama, M.;  Ogata, K.;  Liu, J.;  Wang, Y.;  Gao, Q.;  Fujii, K.;  Fujihira, M.;  Jin, F.; Nakamura, S., New insights into highly efficient reduction of CO2 to formic acid by using zinc under mild hydrothermal conditions: a joint experimental and theoretical studyPhysical Chemistry Chemical Physics 2014, 16 (37), 19836-19840.  https://doi.org/10.1039/c4cp03388d

10.    Wang, F.#;  Wang, Y.#;  Jin, F.;  Yao, G.;  Huo, Z.;  Zeng, X.; Jing, Z., One-Pot Hydrothermal Conversion of Cellulose into Organic Acids with CuO as an OxidantIndustrial & Engineering Chemistry Research 2014, 53 (19), 7939-7946.  https://doi.org/10.1021/ie404311d

9.    Hu, J.;  Wang, L.;  Zhang, S.;  Wang, Y.;  Jin, F.;  Fu, X.; Li, H., Universally improving effect of mixed electron donors on the CO2 fixing efficiency of non-photosynthetic microbial communities from marine environments. Journal of Environmental Sciences 2014, 26 (8), 1709-1716.  https://doi.org/10.1016/j.jes.2014.06.011

8.    Wang, Y.;  Wang, F.;  Jin, F.; Jing, Z., Effects of Metals and Ni3S2 on Reactions of Sulfur Species (HS-, S, and S2O32-) under Alkaline Hydrothermal ConditionsIndustrial & Engineering Chemistry Research 2013, 52 (16), 5616-5625.  https://doi.org/10.1021/ie400401v

7.    Wang, Y.;  Jin, F.;  Zeng, X.;  Yao, G.; Jing, Z., A novel method for producing hydrogen from water with Fe enhanced by HS- under mild hydrothermal conditionsInternational Journal of Hydrogen Energy 2013, 38 (2), 760-768.  https://doi.org/10.1016/j.ijhydene.2012.10.033

6.    Wang, Y.;  Jin, F.;  Zeng, X.;  Ma, C.;  Wang, F.;  Yao, G.; Jing, Z., Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditionsApplied Energy 2013, 104, 306-309.  https://doi.org/10.1016/j.apenergy.2012.11.014

5.    Wang, Y.;  Jin, F.;  Sasaki, M.;  Wahyudiono;  Wang, F.;  Jing, Z.; Goto, M., Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AIChE Journal 2013, 59 (6), 2096-2104.  https://doi.org/10.1002/aic.13960

4.    Yao, G.;  Zeng, X.;  Li, Q.;  Wang, Y.;  Jing, Z.; Jin, F., Direct and Highly Efficient Reduction of NiO into Ni with Cellulose under Hydrothermal ConditionsIndustrial & Engineering Chemistry Research 2012, 51 (23), 7853-7858.  https://doi.org/10.1021/ie300474h

3.    Zhang, S.;  Jin, F.;  Zeng, X.;  Hu, J.;  Huo, Z.;  Wang, Y.;  Watanabe, N.;  Hirano, N.; Tsuchiya, N., Effects of general zero-valent metals power of Co/W/Ni/Fe on hydrogen production with H2S as a reductant under hydrothermal conditionsInternational Journal of Hydrogen Energy 2011, 36 (15), 8878-8884. https://doi.org/10.1016/j.ijhydene.2011.04.227

2.    Wang, F.;  Huo, Z.;  Wang, Y.; Jin, F., Hydrothermal conversion of cellulose into lactic acid with nickel catalystResearch on Chemical Intermediates 2011, 37 (2-5), 487-492.  https://doi.org/10.1007/s11164-011-0274-2

1.    Hu, J.;  Wang, L.;  Zhang, S.;  Wang, Y.; Xi, X., Inhibitory effect of organic carbon on CO2 fixing by non-photosynthetic microbial community isolated from the oceanBioresource Technology 2011, 102 (14), 7147-7153.  https://doi.org/10.1016/j.biortech.2011.04.028


著作章节

7.         Wang, Y., Jin, F. Catalytic hydrothermal reactions for small molecules activation. In F. Jin (Ed.), hydrothermal reduction of carbon dioxide to low-carbon fuel. Boca Raton, Fla.: CRC Press 2018; pp 23-36.

6.         Wang, Y., Hatakeyama, M., Ogata, K., Jin, F., Nakamura, S. Modeling of electrochemcial CO2 reduction. In J. Qiao (Ed.), Electrochemical reduction of carbon dioxide: fundamentals. CRC Press. 2016; pp 311-332.

5.        Wang, Y., Yao, G., Jin, F. Hydrothermal conversion of cellulose into organic acids with a CuO oxidant. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion. Springer Berlin Heidelberg: 2014; pp 31-59.

4.         Shen, Z., Zhang, W., Zeng, X., Jin, F., Yao, G., Wang, Y. Water under high temperature and pressure conditions and some special reactions under hydrothermal conditions. In F. Jin (Ed.), hydrothermal reduction of carbon dioxide to low-carbon fuels. Boca Raton, Fla.: CRC Press 2018; pp 1-22.

3.         Nakamura, S., Hatakeyama M., Wang, Y., Ogata, K., Fujii, K. A basic quantum chemical review on the activation of CO2. In ACS Symposium Series volume “Advances in CO2 Capture, Sequestration, and Conversion”: 2015; pp 123–134.

2.         Jin, F., Wang, Y., Zeng, X., Shen, Z., Yao, G. Water under high temperature and pressure conditions and its applications to develop green technologies for biomass conversion. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion. Springer Berlin Heidelberg: 2014; pp 3-28.

1.        Zeng, X.; Yao, G., Wang, Y., Jin, F. Hydrothermal Conversion of lignin and its model compounds into formic acid and acetic acid. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion. Springer Berlin Heidelberg: 2014; pp 61-82.