期刊论文
2024
35. Xie, H.#; Zhang, Y.#; Liu, P.#; Duo, X.; Hu, Z.; Yu, J.; Wang, Z.; Yao, G.; Feng, L.; Huang, X.*; Ouyang, R.*; Wang, Y.*, Rb-Doped Perovskite Oxides: Surface Enrichment and Structural Reconstruction During the Oxygen Evolution Reaction. Small, 2024, https://doi.org/10.1002/smll.202400668
34. Li, Z.; Hu, Z.; Wang, Y.; Ouyang, R.*, Molecular Dynamics Simulation of Co–Fe-Based Perovskite Oxide/Water Interfaces. J. Phys. Chem. C, 2024, https://pubs.acs.org/doi/10.1021/acs.jpcc.4c03394
33. Zhang, P.; Fan, J.; Wang, Y.*; Dang, Y.; Heumann, S.*; Ding, Y.*, Insights into the role of defects on the Raman spectroscopy of carbon nanotube and biomass-derived carbon. Carbon, 2024, 118998. https://doi.org/10.1016/j.carbon.2024.118998
32. Shi, N.; Ma, R.; Lin, L.; Xie, W.; Liu, P.; Li, P.; Fan, H.; Tang, Y.; Wang, Y.; Lin, S.*; Huang, X.*, In-situ derived defective Ru particles anchored on Ru-Ni layered double hydroxides for enhanced alkaline hydrogen evolution. Small, 2024, 2311076. https://onlinelibrary.wiley.com/doi/10.1002/smll.202311076
2023
31. Erdem, E.; Tarasov, A.; Kube, P.; Koch, G.; Plodinec, M.; Lunkenbein, T.; Carey, S.; Wang, Y.; Hävecker, M.; Rosowski, F.; Schlögl, R.; Trunschke, A.*, The Influence of Melting on Catalysis in Propane Oxidation. ChemCatChem 2023, e202301242. https://doi.org/10.1002/cctc.202301242
30. Hu, Z.; Yan, Q.; Wang, Y.*, Dynamic surface reconstruction of perovskite oxides in oxygen evolution reaction and its impacts on catalysis: A critical review. Materials Today Chemistry 2023, 34, 101800. https://doi.org/10.1016/j.mtchem.2023.101800
29. Li, Y.; Zhu, R.; Wang, Y*.; Feng, L.*; Liu, Y.*, Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides. NPJ Computational Materials 2023, 9 (1), 109. https://doi.org/10.1038/s41524-023-01068-7
28. Wang, J.#, Xie, H.#, Wang, Y.*, Ouyang, R.*, Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalysts. J. Am. Chem. Soc. 2023. https://doi.org/10.1021/jacs.3c03493
27. Wang, J.#, Xie, H.#, Wang, Y.*, Ouyang, R.*, Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalysts. https://doi.org/10.48550/arXiv.2301.06884
2022
26. Wang, Y.; Rosowski, F.; Schlögl, R.; Trunschke, A., Oxygen Exchange on Vanadium Pentoxide. The Journal of Physical Chemistry C 2022, 126 (7), 3443–3456. http://doi.org/10.1021/acs.jpcc.2c00174 (supplementary cover)
2011-2020
25. Werny, M. J.; Wang, Y.; Girgsdies, F.; Schloegl, R.; Trunschke, A., Fluctuating Storage of the Active Phase in a Mn-Na2WO4/SiO2 Catalyst for the Oxidative Coupling of Methane. Angewandte Chemie-International Edition 2020, 59 (35), 14921-14926. https://doi.org/10.1002/anie.202004778
24. Wang, Y.*; Hayashi, T.; He, D.; Li, Y.; Jin, F.; Nakamura, R.*, A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B-Environmental 2020, 264. https://doi.org/10.1016/j.apcatb.2019.118495
23. Trunschke, A.; Bellini, G.; Boniface, M.; Carey, S. J.; Dong, J.; Erdem, E.; Foppa, L.; Frandsen, W.; Geske, M.; Ghiringhelli, L. M.; Girgsdies, F.; Hanna, R.; Hashagen, M.; Haevecker, M.; Huff, G.; Knop-Gericke, A.; Koch, G.; Kraus, P.; Kroehnert, J.; Kube, P.; Lohr, S.; Lunkenbein, T.; Masliuk, L.; d'Alnoncourt, R. N.; Omojola, T.; Pratsch, C.; Richter, S.; Rohner, C.; Rosowski, F.; Ruether, F.; Scheffler, M.; Schloegl, R.; Tarasov, A.; Teschner, D.; Timpe, O.; Trunschke, P.; Wang, Y.; Wrabetz, S., Towards Experimental Handbooks in Catalysis. Topics in Catalysis 2020. https://doi.org/10.1007/s11244-020-01380-2
22. Koch, G.; Haevecker, M.; Teschner, D.; Carey, S. J.; Wang, Y.; Kube, P.; Hetaba, W.; Lunkenbein, T.; Auffermann, G.; Timpe, O.; Rosowski, F.; Schloegl, R.; Trunschke, A., Surface Conditions That Constrain Alkane Oxidation on Perovskites. ACS Catalysis 2020, 10 (13), 7007-7020. https://doi.org/10.1021/acscatal.0c01289
21. Thum, L.; Rudolph, M.; Schomaecker, R.; Wang, Y.; Tarasov, A.; Trunschke, A.; Schloegl, R., Oxygen Activation in Oxidative Coupling of Methane on Calcium Oxide. Journal of Physical Chemistry C 2019, 123 (13), 8018-8026. https://doi.org/10.1021/acs.jpcc.8b07391
20. Li, X.; Teschner, D.; Streibel, V.; Lunkenbein, T.; Masliuk, L.; Fu, T.; Wang, Y.; Jones, T.; Seitz, F.; Girgsdies, F.; Rosowski, F.; Schloegl, R.; Trunschke, A., How to control selectivity in alkane oxidation? Chemical Science 2019, 10 (8), 2429-2443. https://doi.org/10.1039/c8sc04641g
19. Fu, T.; Wang, Y.; Wernbacher, A.; Schloegl, R.; Trunschke, A., Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane Oxidation. ACS Catalysis 2019, 9 (6), 4875-4886. https://doi.org/10.1021/acscatal.9b00326
18. Amakawa, K.; Wang, Y.; Kroehnert, J.; Schloegl, R.; Trunschke, A., Acid sites on silica-supported molybdenum oxides probed by ammonia adsorbtion: Experiment and theory. Molecular Catalysis 2019, 478. https://doi.org/10.1016/j.mcat.2019.110580
17. Wang, Y.; Wang, F.; Li, C.; Jin, F., Kinetics and mechanism of reduction of CO2 by glycerol under alkaline hydrothermal conditions. International Journal of Hydrogen Energy 2016, 41 (21), 9128-9134. https://doi.org/10.1016/j.ijhydene.2016.02.009
16. Ooka, H.; Wang, Y.; Yamaguchi, A.; Hatakeyama, M.; Nakamura, S.; Hashimoto, K.; Nakamura, R., Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy. Physical Chemistry Chemical Physics 2016, 18 (22), 15199-15204. https://doi.org/10.1039/c6cp02385a
15. Duo, J.; Jin, F.*; Wang, Y.*; Zhong, H.; Lyu, L.; Yao, G.; Huo, Z., NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid. Chemical Communications 2016, 52 (16), 3316-3319. https://doi.org/10.1039/c5cc09611a
14. Wang, Y.; Hatakeyama, M.; Ogata, K.; Wakabayashi, M.; Jin, F.; Nakamura, S., Activation of CO2 by ionic liquid EMIM-BF4 in the electrochemical system: a theoretical study. Physical Chemistry Chemical Physics 2015, 17 (36), 23521-23531. https://doi.org/10.1039/c5cp02008e
13. Wang, J.; Yao, G.; Wang, Y.; Zhang, H.; Huo, Z.; Jin, F., A novel Pd/C-catalyzed conversion of glucose to 1,2-propanediol by water splitting with Zn. RSC Advances 2015, 5 (63), 51435-51439. https://doi.org/10.1039/c5ra08482b
12. Ogata, K.; Hatakeyama, M.; Jin, F.; Zeng, X.; Wang, Y.; Fujii, K.; Nakamura, S., A model study of hydrothermal reactions of trigonal dipyramidal Zn-5 cluster with two water molecules. Computational and Theoretical Chemistry 2015, 1070, 126-131. https://doi.org/10.1016/j.comptc.2015.07.029
11. Zeng, X.; Hatakeyama, M.; Ogata, K.; Liu, J.; Wang, Y.; Gao, Q.; Fujii, K.; Fujihira, M.; Jin, F.; Nakamura, S., New insights into highly efficient reduction of CO2 to formic acid by using zinc under mild hydrothermal conditions: a joint experimental and theoretical study. Physical Chemistry Chemical Physics 2014, 16 (37), 19836-19840. https://doi.org/10.1039/c4cp03388d
10. Wang, F.#; Wang, Y.#; Jin, F.; Yao, G.; Huo, Z.; Zeng, X.; Jing, Z., One-Pot Hydrothermal Conversion of Cellulose into Organic Acids with CuO as an Oxidant. Industrial & Engineering Chemistry Research 2014, 53 (19), 7939-7946. https://doi.org/10.1021/ie404311d
9. Hu, J.; Wang, L.; Zhang, S.; Wang, Y.; Jin, F.; Fu, X.; Li, H., Universally improving effect of mixed electron donors on the CO2 fixing efficiency of non-photosynthetic microbial communities from marine environments. Journal of Environmental Sciences 2014, 26 (8), 1709-1716. https://doi.org/10.1016/j.jes.2014.06.011
8. Wang, Y.; Wang, F.; Jin, F.; Jing, Z., Effects of Metals and Ni3S2 on Reactions of Sulfur Species (HS-, S, and S2O32-) under Alkaline Hydrothermal Conditions. Industrial & Engineering Chemistry Research 2013, 52 (16), 5616-5625. https://doi.org/10.1021/ie400401v
7. Wang, Y.; Jin, F.; Zeng, X.; Yao, G.; Jing, Z., A novel method for producing hydrogen from water with Fe enhanced by HS- under mild hydrothermal conditions. International Journal of Hydrogen Energy 2013, 38 (2), 760-768. https://doi.org/10.1016/j.ijhydene.2012.10.033
6. Wang, Y.; Jin, F.; Zeng, X.; Ma, C.; Wang, F.; Yao, G.; Jing, Z., Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions. Applied Energy 2013, 104, 306-309. https://doi.org/10.1016/j.apenergy.2012.11.014
5. Wang, Y.; Jin, F.; Sasaki, M.; Wahyudiono; Wang, F.; Jing, Z.; Goto, M., Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AIChE Journal 2013, 59 (6), 2096-2104. https://doi.org/10.1002/aic.13960
4. Yao, G.; Zeng, X.; Li, Q.; Wang, Y.; Jing, Z.; Jin, F., Direct and Highly Efficient Reduction of NiO into Ni with Cellulose under Hydrothermal Conditions. Industrial & Engineering Chemistry Research 2012, 51 (23), 7853-7858. https://doi.org/10.1021/ie300474h
3. Zhang, S.; Jin, F.; Zeng, X.; Hu, J.; Huo, Z.; Wang, Y.; Watanabe, N.; Hirano, N.; Tsuchiya, N., Effects of general zero-valent metals power of Co/W/Ni/Fe on hydrogen production with H2S as a reductant under hydrothermal conditions. International Journal of Hydrogen Energy 2011, 36 (15), 8878-8884. https://doi.org/10.1016/j.ijhydene.2011.04.227
2. Wang, F.; Huo, Z.; Wang, Y.; Jin, F., Hydrothermal conversion of cellulose into lactic acid with nickel catalyst. Research on Chemical Intermediates 2011, 37 (2-5), 487-492. https://doi.org/10.1007/s11164-011-0274-2
1. Hu, J.; Wang, L.; Zhang, S.; Wang, Y.; Xi, X., Inhibitory effect of organic carbon on CO2 fixing by non-photosynthetic microbial community isolated from the ocean. Bioresource Technology 2011, 102 (14), 7147-7153. https://doi.org/10.1016/j.biortech.2011.04.028
著作章节
7. Wang, Y., Jin, F. Catalytic hydrothermal reactions for small molecules activation. In F. Jin (Ed.), hydrothermal reduction of carbon dioxide to low-carbon fuel. Boca Raton, Fla.: CRC Press 2018; pp 23-36.
6. Wang, Y., Hatakeyama, M., Ogata, K., Jin, F., Nakamura, S. Modeling of electrochemcial CO2 reduction. In J. Qiao (Ed.), Electrochemical reduction of carbon dioxide: fundamentals. CRC Press. 2016; pp 311-332.
5. Wang, Y., Yao, G., Jin, F. Hydrothermal conversion of cellulose into organic acids with a CuO oxidant. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion. Springer Berlin Heidelberg: 2014; pp 31-59.
4. Shen, Z., Zhang, W., Zeng, X., Jin, F., Yao, G., Wang, Y. Water under high temperature and pressure conditions and some special reactions under hydrothermal conditions. In F. Jin (Ed.), hydrothermal reduction of carbon dioxide to low-carbon fuels. Boca Raton, Fla.: CRC Press 2018; pp 1-22.
3. Nakamura, S., Hatakeyama M., Wang, Y., Ogata, K., Fujii, K. A basic quantum chemical review on the activation of CO2. In ACS Symposium Series volume “Advances in CO2 Capture, Sequestration, and Conversion”: 2015; pp 123–134.
2. Jin, F., Wang, Y., Zeng, X., Shen, Z., Yao, G. Water under high temperature and pressure conditions and its applications to develop green technologies for biomass conversion. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion. Springer Berlin Heidelberg: 2014; pp 3-28.
1. Zeng, X.; Yao, G., Wang, Y., Jin, F. Hydrothermal Conversion of lignin and its model compounds into formic acid and acetic acid. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion. Springer Berlin Heidelberg: 2014; pp 61-82.