44171
当前位置: 首页   >  网络课程
网络课程

本栏是本科生课程“数学物理方法”、研究生课程“高等光学”、COMSOL数值模拟方法经验、课题组研究生培养等相关讲解视频和辅助资料的发布。

如果课题组的网络课程帮助到了大家,希望大家能够在未来研究中多引用课题组的研究成果。


高等光学课程

1. 第一讲: 标量场和梯度

https://www.bilibili.com/video/BV1ue12YKEwW/?vd_source=e8aa938a981b5debf5548fcf7fdba713 

与本节有关的研究深入阅读和引用:

Can Maxwell's fish eye lens really give perfect imaging? Progress In Electromagnetics Research 108, 307-322 (2010). 

https://www.jpier.org/issues/volume.html?paper=10091003


2. 第二讲: 矢量场的散度与旋度

https://www.bilibili.com/video/BV1SoCZYwEpe/?vd_source=e8aa938a981b5debf5548fcf7fdba713 

与本节有关的研究深入阅读和引用:

Virtual Fresnel drag in spatiotemporal transformation medium, Optics Express 32(18), 32128-32137 (2024). 

https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-18-32128&id=554768


3. 第三讲: 麦克斯韦方程组

https://www.bilibili.com/video/BV12UDbY8ER5/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713 

与本节有关的研究深入阅读和引用:

Tunable uniform field enhancement in a subwavelength air pillar by photonic doping in epsilon-near-zero mediumResults in Physics 61, 107778 (2024). 

论文下载:

通过网盘链接: https://pan.baidu.com/s/1cOYHpNU6zxb43RwlZqVgBQ?pwd=q9rb 提取码: q9rb

 

4. 第四讲: 电磁材料 上

https://www.bilibili.com/video/BV177DVYiEZm/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713 

与本节有关的研究深入阅读和引用:

Extending the scanning angle of a phased array antenna by using a null-space medium, Scientific Reports 4, 6832 (2014).   https://www.nature.com/articles/srep06832 

5. 第五讲: 电磁材料 下

https://www.bilibili.com/video/BV1Q8mBYXEuP/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713

与本节有关的研究深入阅读和引用:

Reversing the direction of space and inverse Doppler effect in positive refraction index media, European Journal of Physics 38, 014003 (2017). https://iopscience.iop.org/article/10.1088/0143-0807/38/1/014003/meta 



数学物理方法课程

1. 复变函数的积分-第一节积分的定义

https://www.bilibili.com/video/BV1772aYyEnj/?vd_source=e8aa938a981b5debf5548fcf7fdba713

与本节有关的研究深入阅读和引用:

Approaches to achieve broadband optical transformation devices with transmuted singularity,  Journal of the Optical Society of America A 29, 124-129 (2012)

https://opg.optica.org/josaa/abstract.cfm?uri=josaa-29-1-124


2. 复变函数的积分-第二节柯西积分定理:

https://www.bilibili.com/video/BV1N3yWYfEnB/?vd_source=e8aa938a981b5debf5548fcf7fdba713

与本节有关的研究深入阅读和引用:

Reversing the direction of space and inverse Doppler effect in positive refraction index media, 

European Journal of Physics 38, 014003 (2017). 

https://iopscience.iop.org/article/10.1088/0143-0807/38/1/014003/meta


3. 复变函数的积分-第三节柯西积分公式:

 https://www.bilibili.com/video/BV1veSoYDEbe/?vd_source=e8aa938a981b5debf5548fcf7fdba713

与本节有关的研究深入阅读和引用:

Can Maxwell's fish eye lens really give perfect imaging? Part II. The case with passive drains,

Progress In Electromagnetics Research 110, 313-328 (2010). 

https://www.jpier.org/pier/pier.php?paper=10110313


4. 复变函数的级数-第一节 复数项级数的基础:

https://www.bilibili.com/video/BV1TZ1sYgEyJ/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713


5. 复变函数的级数-第二节 幂级数:

https://www.bilibili.com/video/BV13wmWY2ESS/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713

深入阅读和相关引用研究(本节介绍的是合成与分解的思路,下面文献是级联的组装思路):

Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops, AIP advances 5, 097208 (2015). 

https://pubs.aip.org/aip/adv/article/5/9/097208/902556


6. 复变函数的级数-第三节 泰勒展开:

https://www.bilibili.com/video/BV1ysmtYjEkB/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713

7. 复变函数的级数-第四节 洛朗展开:

https://www.bilibili.com/video/BV1DgmtYdEfT/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713

扩展阅读和引用:

DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials

of positive permeability, Progress In Electromagnetics Research 142, 683-699 (2013)

https://www.jpier.org/PIER/pier.php?paper=13092509





研究生培训课程

1. 研究生创新能力培养:

https://www.bilibili.com/video/BV1xr12YhEyq/?vd_source=e8aa938a981b5debf5548fcf7fdba713 

2. 研究生入学初始培训:


3. 隐身衣的科普介绍

3-1 第一部分,光线绕射式隐身

https://www.bilibili.com/video/BV1C112YZEKD/?vd_source=e8aa938a981b5debf5548fcf7fdba713 

与本节有关的研究深入阅读和引用:

A Camouflage Device without Metamaterials,  Progress In Electromagnetics Research 165, 107-117 (2019). 

http://www.jpier.org/PIER/pier.php?paper=19080803 


3-2 第二部分,散射抵消式隐身

https://www.bilibili.com/video/BV1Mq12YPEc1/?vd_source=e8aa938a981b5debf5548fcf7fdba713

与本节有关的研究深入阅读和引用:

A third way to cloak an object cover-up with a background object, Progress In Electromagnetics Research 149, 173-182 (2014).

https://www.jpier.org/pier/pier.php?paper=14100303


4. 零空间介质的科普介绍

https://www.bilibili.com/video/BV1zKSZYZEQQ/?vd_source=e8aa938a981b5debf5548fcf7fdba713

与本节有关的研究深入阅读和引用:

Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will

 https://www.nature.com/articles/srep16032

Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium 

 https://www.oejournal.org/article/doi/10.29026/oes.2024.230027 



课题组成果科普介绍


1. 电磁-热表面变换用于对电磁波-热流的同时隐身

https://www.bilibili.com/video/BV1w2a5eDEuA/?vd_source=e8aa938a981b5debf5548fcf7fdba713 

对应原文

https://www.oejournal.org//article/doi/10.29026/oes.2024.230027 

Opto-Electron Sci 3, 230027 (2024).

2. 负热导率有源超表面用于实现长焦热透镜

https://www.bilibili.com/video/BV1348se4EX5/?spm_id_from=333.999.0.0&vd_source=e8aa938a981b5debf5548fcf7fdba713

对应原文:

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202210981

Advanced Materials 35(22), 2210981 (2023)

两江科技评论报道: https://mp.weixin.qq.com/s/rhnv_NcLOmNPrliB8xITjw 

太原理工官网报道: http://www2017.tyut.edu.cn/info/1028/25729.htm


3.开放式方向选择型热调控结构

https://www.bilibili.com/video/BV13LVVe7EtN/?share_source=copy_web&vd_source=e5a5be18af2d74e81282f6d145fb4b0f 

对应原文:

https://pubs.aip.org/aip/adv/article/13/10/105304/2914641/Tunable-open-Janus-functional-thermal-device-based

AIP Advances 13, 105304 (2023)


4. 电磁波-声波分束器

https://www.bilibili.com/video/BV1GgVVeDEdg/?share_source=copy_web&vd_source=e5a5be18af2d74e81282f6d145fb4b0f

对应原文:

https://opg.optica.org/ol/fulltext.cfm?uri=ol-48-13-3407&id=531888

Optics Letters 48 (13), 3407-3410  (2023).