研究对象:柔性生物电子:传感及调控材料、器件与智能诊疗微系统
研究问题:关乎个人命运、国家命运、人类命运,影响生死存亡应用场景中的关键问题和挑战
医疗应用:面向关乎个人、国家、人类生死存亡的重要场景和亟须国产化替代创新的极端条件、极端性能、高精尖等重大需求,开展
面向重大疾病的轻量化术前/术中/术后诊断、监护及调控干预
器件及其技术:聚焦柔性可穿戴或微植介入传感器,开发关键材料与结构、关键加工制造技术、核心传感器件、重大疾病诊断监测系统、重大疾病诊疗一体化,以推动生物传感器件往微型化(超薄、微纳、卷曲...)、集成化(多功能集成、高密度阵列集成、三维微/软集成、多模块片上集成如感存算一体和传感供能一体、医疗器械智能传感赋能...)、极端化(耐极端环境、有极端性能、深探测、高临床信息量..)、智能化(自组装、自修复、自适应、可编程、AI+...)、仿生化(功能仿生、结构仿生、仿皮肤、仿感受器、类生类脑...)、批量化发展。
主要研究方向:
按器件类型分:
1. 柔性/仿生电生理(如脑电、肌电、心电、胃电等)传感与调控(如电刺激)器件;
进行中项目课题:皮上肌电/心电监测;神经监测及修复器件---ruiyuan, yutong
2. 柔性/仿生力学(如超声、触觉、流速、压力、拉力、模量)传感器与电子皮肤;
进行中项目课题:可穿戴超声器件--yu kun
3. 柔性/仿生生化(如汗液、组织间液体、伤口渗出液等体液的显色或电化学反应)传感器;
进行中或待结项项目课题:伤口渗出液和组织间液传感器--samim
4. 柔性/仿生/微型/智能集成系统(如柔性电路、AI、诊疗一体、多参数监测等);
The above three can go toward this direction
按创新性技术特点分:
1. 新型极端柔性功能材料、结构或加工工艺 (可拉伸电极材料、敏感材料、界面黏附隔离材料:基于水凝胶、液态金属、低维材料等)
面向特定或多个医疗应用,一方面,基于液态金属、低维材料等导体和水凝胶等聚合物,进行电极材料、敏感材料、界面材料、响应治疗材料的创新,开发极端特异导电、黏附、降解、智能响应、阻隔等材料,另一方面,对核心加工制造技术如喷涂、旋涂、磁控、挤出直写印刷等进行创新,开发批量规模化、精准化、可控化、一致化 、高速、低廉的制造工艺或制造出新型结构。开发极端特异导电材料:这类材料耐极端条件(温度、压力、物理化学干扰…)或者具有极端特殊的性能,在医疗领域的应用主要体现在生物传感器和神经电极等方面。例如,石墨烯基导电材料可以用于高灵敏度的生物传感器电极,实现对生物分子的快速检测。此外,导电水凝胶材料可以用于制造柔性神经电极,实现对神经信号的实时监测和调控。特异极端黏附材料:特异黏附材料能够实现对生物组织的牢固黏附,从而提高诊疗器件的稳定性和有效性。如用于心脏瓣膜修复的黏附性材料,能够确保器件在复杂生物环境中的长期稳定。智能响应材料:这类材料根据外部刺激(如温度、pH值、光等)改变自身的性能,广泛应用于药物递送、生物传感器等领域。可控降解材料:在医疗领域,可控降解材料能够按照预定的速率在体内降解,避免长期植入体内的异物反应。刺激响应性材料:如,pH值响应性材料可以用于开发智能药物递送系统,通过检测体内环境的pH值变化,实现药物的精准释放。此外,刺激响应性材料还可以用于制造智能生物传感器,实现对生物信号的实时监测和分析。
Ref: 1 . Adv. Funct. Mater., 2023; Adv. Mater. 2022, 2208569.
Extreme flexible functional materials, unique structures and novel manufactureing techniques
Targeting specific or multiple medical applications, on one hand, innovation in electrode materials, sensitive materials, interface materials, and responsive therapeutic materials based on conductive materials such as liquid metals, low-dimensional materials, and polymers such as hydrogels is pursued. The goal is to develop materials with extreme properties, such as specific conductivity, adhesion, degradation, intelligent response, and barrier functions. On the other hand, innovations in core processing technologies like spraying, spin coating, magnetron sputtering, and extrusion printing are explored to develop scalable, precise, controllable, consistent, high-speed, and cost-effective manufacturing processes or new structural designs.
Extreme conductive materials: These materials are resistant to extreme conditions (temperature, pressure, physical-chemical interference, etc.) or posssess extreme performances, and their applications in the medical field are primarily in biosensors and neural electrodes. For instance, graphene-based conductive materials can be used in highly sensitive biosensor electrodes for rapid detection of biomolecules. Additionally, conductive hydrogel materials can be used to manufacture flexible neural electrodes for real-time monitoring and regulation of neural signals.
Extreme adhesive materials: These materials can achieve firm adhesion to biological tissues, thereby enhancing the stability and effectiveness of medical devices. For example, adhesive materials used in heart valve repair ensure the device's long-term stability in complex biological environments.
Smart responsive materials: These materials change their properties in response to external stimuli (e.g., temperature, pH, light, etc.) and have broad applications in drug delivery and biosensors.
Controllable degradable materials: In the medical field, controllable degradable materials degrade at a predetermined rate in the body, avoiding long-term foreign body reactions.
2. 新型可穿戴柔性微诊疗器件(如触觉传感器、电子皮肤、电生理传感器、体液传感器、电刺激器件)
围绕重症患者、瘫痪、截肢、脑梗、心梗、肿瘤、代谢等重大疾病体表监测治疗需求,聚焦感觉系统、神经系统、心血管系统、消化系统,呼吸系统及运动系统疾病,基于材料、传感机制、加工制备和系统集成上的创新,开发柔性薄膜、纤维或异形物理和生物化学传感器件,进行高性能智能可穿戴极端监测、治疗或诊疗一体化。
按照研究目标可分为:1)仿生肢体感知特征,构建或集成多种触觉传感器(如力传感器、压力传感器、温度传感器、湿度传感器等),感知外部物体的形状、表面纹理、硬度、温度等物理特征,感知施加在其表面的力(例如抓握物体时的压力或拉力),感知自身的运动状态和位置变化(手脚各关节的角度传感器、惯性传感器等),使假肢或机器人肢体能够适应复杂的操作场景,增强对操作的控制感和灵活性;2)仿生肢体神经性感觉反馈特征。构建刺激反馈器件,模拟人类的感觉神经(如通过尖峰电刺激)传递过程,将纹理、软硬度、质感、压力、温度、湿度、震动、滑动、松动等感知信息实时反馈给使用者,帮助患者获得对操作过程的实时感知,或在某些场景中为参与者塑造虚拟触觉与幻觉感知;3)仿生重建感觉系统,治疗瘫痪或截肢等患者的感知缺失、幻肢疼痛等疾病;4)基于体表易采集生理信号和柔性理化传感器件,进行可穿戴疾病智能诊断监护,如心血管状况、伤口状况、代谢状况、压力状况等。
按照器件工作原理可分为:1)柔性力学传感:应力、压力、杨氏模量等传感;2)柔性生化传感与响应器件:电化学传感、生物亲和传感、体液\微流体传感;PH响应器件等,3)柔性电生理传感与刺激:心电、肌电等;4)电阻抗测试;5)温度传感与响应等。
Ref: Nat. Rev. Bioeng., 2023; Adv. Mater. 2022, 2208569; Adv. Funct. Mater., 2023; Com. Mater. 5, 2024; Adv. Healthcare Mater., 2021; Nano Energy 2020,2, 104460; Adv. Energy Mater. 2017, 7, 1601255; ACS Appl. Mater. Inter. 2018.
Wearable flexible sensors and diagnostic devices
Focusing on the surface monitoring demands associated with major conditions such as severe illnesses, paralysis, amputations, stroke, heart attacks, tumors, and metabolic disorders, advancements are being pursued in materials, sensing mechanisms, data processing, and system integration. The objective is to develop high-performance, intelligent, and wearable devices—crafted as flexible films, fibers, or uniquely shaped physical and biochemical sensors—that enable advanced monitoring, therapy, and diagnostic integration. These innovations encompass:
3. 新型深穿透、微植介入柔性诊疗器件(如超声器件、可注射电子)
围绕体内重大疾病临床应用场景,基于超声、微植入、介入、注射器件,进行深探测、监护治疗,如深层生物物理化学信息的无创/低侵入监测,动态场景的脉搏监测等,智能或多功能监护、诊断器件等。
Flexible Deep-transmitted, Implantable Diagnostic and Therapeutic Micro-devices
Targeting clinical applications for major diseases inside the body, innovations in ultrasound, microimplantable, interventional, and injection devices are developed for deep detection, monitoring, and treatment. This includes non-invasive or minimally invasive monitoring of deep biological, physical, and chemical information, dynamic pulse monitoring in real-time scenarios, and intelligent or multifunctional diagnostic and therapeutic devices.
4、新型应用场景:智能诊疗柔性微系统 (找合作、公司或组内学生完成)
硬件:根据诊疗器件和临床应用需求,开发与诊疗器件匹配的柔性微电子电路、蓝牙NFC等无线传输模块,实现生理信号的放大、滤波、模数转换等处理和低能耗远距离无线传输。
软件:片上集成机器学习等人工智能技术,进行目标疾病的快速识别、精准诊断与智能管理;开发用户友好界面,对分析后的数据进行直观多维移动终端显示和智能预警。
产品:最终开发出高集成和高成熟度的可穿戴\低入侵\微植入监护产品、康复假肢或手套、床上床旁/枕上智能监护产品等。
Intelligent Flexible Diagnostic and Therapeutic Microsystems
Hardware: Based on the diagnostic and therapeutic device and clinical application needs, flexible microelectronic circuits, Bluetooth, NFC wireless transmission modules, and other technologies are developed to achieve signal amplification, filtering, analog-to-digital conversion, and low-energy long-distance wireless transmission of physiological signals.
Software: On-chip integration of machine learning and other AI technologies enables rapid disease identification, accurate diagnosis, and intelligent management. A user-friendly interface is developed for intuitive, multi-dimensional mobile terminal displays and smart alerts based on analyzed data.
Products: The final goal is to develop highly integrated, mature wearable/low-invasive/micro-implantable monitoring products, rehabilitation prosthetics or gloves, bedside/side-of-bed smart monitoring products, etc.
为什么要研究生物界面柔性生物电子及其诊疗应用?
人体主要有十四大系统,包括心血管系统、呼吸系统、消化系统、泌尿系统、免疫系统、内分泌系统、神经系统、淋巴系统、运动系统、感觉系统、生殖系统、皮肤系统、血液系统、骨骼系统和内分泌腺系统。每个系统的功能相互关联,其病变可能引起分子、细胞、组织和器官环境的理化性质变化,例如酸碱度、电导率、机械压力和温度等异常。这些理化变化不仅可以作为疾病的标志,还可能成为精准诊断和治疗的关键靶点。通过生物界面柔性传感器,如可穿戴或注射、微植介入器件,可实时感知这些微妙变化,实现早期、动态和精准的疾病监测与诊断。此外,基于这些变化,智能响应器件能够触发按需药物释放、物理干预或其他治疗功能,从而实现个性化精准治疗。相比传统笨重医疗器械,柔性智能微诊疗器件凭借其轻量化、柔性化和高生物相容性,不仅能与人体实现无缝贴合,提高诊疗舒适度与效率,还开辟了面向智能化、便携式和高效医疗的新方向。
The human body consists of fourteen major systems, including the cardiovascular, respiratory, digestive, urinary, immune, endocrine, nervous, lymphatic, musculoskeletal, sensory, reproductive, integumentary, blood, skeletal, and endocrine glands. The functions of these systems are interrelated, and their dysfunctions can lead to changes in the physicochemical properties of molecules, cells, tissues, and organs, such as abnormalities in pH, conductivity, mechanical pressure, and temperature. These changes can serve as disease markers and key targets for precision diagnosis and treatment. Through bio-interface flexible sensors, such as wearable or injectable, micro-implantable devices, these subtle changes can be detected in real-time, enabling early, dynamic, and precise disease monitoring and diagnosis. Furthermore, based on these changes, smart responsive devices can trigger on-demand drug release, physical interventions, or other therapeutic functions, achieving personalized precision treatment. Compared to traditional bulky medical devices, flexible intelligent microdiagnostic and therapeutic devices, with their lightweight, flexible design, and high biocompatibility, not only ensure seamless integration with the body to improve comfort and efficiency but also pave the way for intelligent, portable, and efficient medical applications.