4913
当前位置: 首页   >  成果及论文
成果及论文

Google Scholar: https://scholar.google.com/citations?hl=en&user=Hj-kD_sAAAAJ&view_op=list_works&sortby=pubdate

2024

  1. Yang, X., Zhang, C.*, Li, X., Cao, Z.*, Wang, P., Wang, H., Liu, G., Xia, Z., Zhu, D. and Chen, W.Q.*, 2024. Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth. Ecological Economics, 217, p.108092. https://doi.org/10.1016/j.ecolecon.2023.108092

  2. Liu, Y., Chu, C.*, Zhang, R., Chen, S., Xu, C., Zhao, D., Meng, C., Ju, M. and Cao, Z.*, 2024. Impacts of high-albedo urban surfaces on outdoor thermal environment across morphological contexts: A case of Tianjin, China. Sustainable Cities and Society, 100, p.105038. https://doi.org/10.1016/j.scs.2023.105038

2023

  1. Jin, E.*, van Ewijk, S., Kanaoka, K.S., Alamerew, Y.A., Lin, H., Cao, Z., Jabarivelisdeh, B., Ehmann, K.F., Chertow, M.R. and Masanet, E., 2023. Sustainability assessment and pathways for US domestic paper recycling. Resources, Conservation and Recycling, 199, p.107249. https://doi.org/10.1016/j.resconrec.2023.107249

  2. Lei, N.*, Lu, J., Cheng, Z., Cao, Z., Shehabi, A. and Masanet, E., 2023, November. Geospatial assessment of water footprints for hyperscale data centers in the United States. In Journal of Physics: Conference Series (Vol. 2600, No. 17, p. 172003). IOP Publishing. http://dx.doi.org/10.1088/1742-6596/2600/17/172003

  3. Wu, T., Ng, S.T.*, Chen, J. and Cao, Z.*, 2023. More intensive use and lifetime extension can enable net-zero emissions in China's cement cycle. Resources, Conservation and Recycling, 198, p.107144. https://doi.org/10.1016/j.resconrec.2023.107144

  4. Song, L., van Ewijk, S., Masanet, E., Watari, T., Meng, F., Cullen, J.M., Cao, Z.* and Chen, W.Q.*, 2023. China's bulk material loops can be closed but deep decarbonization requires demand reduction. Nature Climate Change, 13(10), pp.1136-1143. https://doi.org/10.1038/s41558-023-01782-6

  5. Cao, Z.* and Chen, W.Q., 2023. Circular economy strategies to decarbonize China's bulk material cycles. Nature Climate Change, 13(10), pp.1030-1031. https://doi.org/10.1038/s41558-023-01799-x

  6. Wang, Z., Wiedenhofer, D., Stephan, A., Perrotti, D., Van den Bergh, W. and Cao, Z.*, 2023. High-resolution mapping of material stocks in Belgian road infrastructure: material efficiency patterns, material recycling potentials, and greenhouse gas emissions reduction opportunities. Environmental Science & Technology, 57(34), pp.12674-12688. https://doi.org/10.1021/acs.est.2c08703

  7. Van Ewijk, S., Ashton, W.S., Berrill, P., Cao, Z., Chertow, M., Chopra, S.S., Fishman, T., Fitzpatrick, C., Heidrich, O., Leipold, S. and Ritter, F., 2023. 10 insights from industrial ecology for the circular economy. https://discovery.ucl.ac.uk/id/eprint/10172438/

  8. He, L.*, Tao, M., Liu, Z., Cao, Z., Zhu, J., Gao, J., Chailleux, E.*, Huang, Y., Vasconcelos, K., Falchetto, A.C. and Balieu, R., 2023. Biomass valorization toward sustainable asphalt pavements: Progress and prospects. Waste Management, 165, pp.159-178. https://doi.org/10.1016/j.wasman.2023.03.035

  9. Dombi, M.*, Harazin, P., Karcagi-Kováts, A., Aldebei, F. and Cao, Z., 2023. Perspectives on the material dynamic efficiency transition in decelerating the material stock accumulation. Journal of Environmental Management, 335, p.117568. https://doi.org/10.1016/j.jenvman.2023.117568

  10. Watari, T.*, Cao, Z., Serrenho, A.C. and Cullen, J., 2023. Growing role of concrete in sand and climate crises. Iscience, 26(5). https://doi.org/10.1016/j.isci.2023.106782

  11. Dombi, M.*, Fahid, A.F.M., Harazin, P., Karcagi-Kováts, A. and Cao, Z., 2023. Four economic principles of just sustainability transition. PLOS Sustainability and Transformation, 2(3), p.e0000053. https://doi.org/10.1371/journal.pstr.0000053

  12. Jiang, J., Chu, C.*, Song, L., Gao, X., Huang, B., Zhang, Y., Zhang, Y., Liu, Y., Hou, L., Ju, M. and Cao, Z.*, 2023. From prospecting to mining: A review of enabling technologies, LCAs, and LCCAs for improved construction and demolition waste management. Waste Management, 159, pp.12-26. https://doi.org/10.1016/j.wasman.2023.01.017

2022

  1. Xu, X., Huang, B.*, Liu, L., Cao, Z., Gao, X., Mao, R., Duan, L., Chen, Y., Wang, Y. and Liu, G., 2022. Modernizing cement manufacturing in China leads to substantial environmental gains. Communications Earth & Environment, 3(1), p.276. 

    https://doi.org/10.1038/s43247-022-00579-3

  2. Watari, T.*, Cao, Z.*, Hata, S. and Nansai, K., 2022. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nature Communications, 13(1), p.4158. 

    https://doi.org/10.1038/s41467-022-31806-2

  3. Cao, Z.* and Masanet, E., 2022. Material efficiency to tackle the sand crisis. Nature Sustainability, 5(5), pp.370-371. 

    https://doi.org/10.1038/s41893-022-00869-w

2021

  1. Lei, N.*, Cheng, Z., Cao, Z. and Masanet, E., 2021, November. An integrated decision-making framework for sustainable data center operation through intelligent load scheduling. In Journal of Physics: Conference Series (Vol. 2042, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1742-6596/2042/1/012091

  2. Dombi, M.*, Szakály, Z., Kiss, V.Á., Cao, Z. and Liu, G., 2021. Material Hide‐and‐Seek: Looking for the Resource Savings Due to International Trade of Food Products. Earth's Future, 9(7), p.e2020EF001861. https://doi.org/10.1029/2020EF001861

  3. 宋璐璐, 曹植, 代敏, 2021. 中国乘用车物质代谢与碳减排策略. 资源科学, 43(3), pp.501-512.

  4. Song, L., Dai, S., Cao, Z., Liu, Y. and Chen, W.Q.*, 2021. High spatial resolution mapping of steel resources accumulated above ground in mainland China: Past trends and future prospects. Journal of cleaner production, 297, p.126482. https://doi.org/10.1016/j.jclepro.2021.126482

  5. Xue, L., Cao, Z., Scherhaufer, S., Östergren, K., Cheng, S. and Liu, G.*, 2021. Mapping the EU tomato supply chain from farm to fork for greenhouse gas emission mitigation strategies. Journal of Industrial Ecology, 25(2), pp.377-389. https://doi.org/10.1111/jiec.13080

  6. Cao, Z., Masanet, E.*, Tiwari, A. and Akolawala, S., 2021. Decarbonizing Concrete: Deep decarbonization pathways for the cement and concrete cycle in the United States, India, and China. Industrial sustainability analysis lab-Climateworks foundation. https://www.climateworks.org/report/decarbonizing-concrete/

  7. 王小虎, 楚春礼, 曹植, 楚春亮, 鞠美庭, 2022. 分布式光伏-储能系统经济-碳排放-能源效益实证分析——以山东省胶州光伏及其储能系统为例. 中国环境科学, 42(1), pp.402-414.

  8. Zhilyaev, D., Cimpan, C.*, Cao, Z., Liu, G., Askegaard, S. and Wenzel, H., 2021. The living, the dead, and the obsolete: A characterization of lifetime and stock of ICT products in Denmark. Resources, Conservation and Recycling, 164, p.105117. https://doi.org/10.1016/j.resconrec.2020.105117

2020

  1. Cao, Z., Myers, R.J., Lupton, R.C., Duan, H., Sacchi, R., Zhou, N., Reed Miller, T., Cullen, J.M., Ge, Q. and Liu, G.*, 2020. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature communications, 11(1), p.3777. 

    https://doi.org/10.1038/s41467-020-17583-w

  2. Liu, L., Cao, Z., Liu, X., Shi, L., Cheng, S. and Liu, G.*, 2020. Oil security revisited: An assessment based on complex network analysis. Energy, 194, p.116793. https://doi.org/10.1016/j.energy.2019.116793

2019

  1. Zhang, L.*, Cao, Z., Chen, G. and Wang, Z., 2019. A study of China's inter-city networks for innovation cooperation within software and service firms. Eurasian Geography and Economics, 60(5), pp.582-615. https://doi.org/10.1080/15387216.2019.1695644

  2. Cao, Z., O' sullivan, C., Tan, J., Kalvig, P., Ciacci, L., Chen, W., Kim, J. and Liu, G.*, 2019. Resourcing the fairytale country with wind power: a dynamic material flow analysis. Environmental Science & Technology, 53(19), pp.11313-11322. https://doi.org/10.1021/acs.est.9b03765

  3. Qu, Q., Wang, L.*, Cao, Z., Zhong, S.*, Mou, C., Sun, Y. and Xiong, C., 2019. Unfolding the price effects of non-ferrous industry chain on economic development: A case study of Yunnan province. Resources Policy, 61, pp.1-20. https://doi.org/10.1016/j.resourpol.2019.01.011

  4. Cao, Z., Liu, G.*, Duan, H., Xi, F., Liu, G. and Yang, W., 2019. Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis. Applied energy, 238, pp.442-452. https://doi.org/10.1016/j.apenergy.2019.01.106

  5. Liu, Q., Cao, Z., Liu, X., Liu, L., Dai, T., Han, J., Duan, H., Wang, C., Wang, H., Liu, J. and Cai, G., 2019. Product and metal stocks accumulation of China’s megacities: patterns, drivers, and implications. Environmental science & technology, 53(8), pp.4128-4139. https://doi.org/10.1021/acs.est.9b00387

  6. Ciacci, L.*, Vassura, I., Cao, Z., Liu, G. and Passarini, F., 2019. Recovering the "new twin": Analysis of secondary neodymium sources and recycling potentials in Europe. Resources, Conservation and Recycling, 142, pp.143-152. https://doi.org/10.1016/j.resconrec.2018.11.024

2018

  1. Cao, Z., Liu, G.*, Zhong, S., Dai, H. and Pauliuk, S., 2018. Integrating dynamic material flow analysis and computable general equilibrium models for both mass and monetary balances in prospective modeling: a case for the Chinese building sector. Environmental Science & Technology, 53(1), pp.224-233. https://doi.org/10.1021/acs.est.8b03633

  2. Han, J.*, Meng, X., Liang, H., Cao, Z., Dong, L. and Huang, C., 2018. An improved nightlight-based method for modeling urban CO2 emissions. Environmental Modelling & Software, 107, pp.307-320. https://doi.org/10.1016/j.envsoft.2018.05.008

  3. Cao, Z., Shen, L.*, Zhong, S., Liu, L., Kong, H. and Sun, Y., 2018. A probabilistic dynamic material flow analysis model for Chinese urban housing stock. Journal of Industrial Ecology, 22(2), pp.377-391. https://doi.org/10.1111/jiec.12579

  4. 刘刚, 曹植, 王鹤鸣, 刘立涛, 陈伍, 王键, 2018. 推进物质流和社会经济代谢研究, 助力实现联合国可持续发展目标. 中国科学院院刊, 33(1), pp.30-39.

2017

  1. Cao, Z., Shen, L., Løvik, A.N., Müller, D.B. and Liu, G.*, 2017. Elaborating the history of our cementing societies: an in-use stock perspective. Environmental science & technology, 51(19), pp.11468-11475. https://doi.org/10.1021/acs.est.7b03077

  2. 刘立涛, 沈镭*, 刘晓洁, 成升魁, 钟帅, 曹植, 张超, 孔含笑, 孙艳姿, 2017. 基于复杂网络理论的中国石油流动格局及供应安全分析. 资源科学, 39(8), pp.1431-1443.

  3. Cao, Z., Shen, L.*, Liu, L.*, Zhao, J., Zhong, S., Kong, H. and Sun, Y., 2017. Estimating the in-use cement stock in China: 1920–2013. Resources, Conservation and Recycling, 122, pp.21-31. https://doi.org/10.1016/j.resconrec.2017.01.021

  4. Yang, Y., Wang, L.*, Cao, Z., Mou, C., Shen, L., Zhao, J. and Fang, Y., 2017. CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels. Journal of Geographical Sciences, 27, pp.711-730. https://doi.org/10.1007/s11442-017-1402-8

  5. 魏丹青, 黄炜*, 曹植, 2017. 省域碳排放影响因素分析及减碳机制探讨-以浙江省为例. 生态经济, 33(12), pp.14-18.

  6. 曹植, 沈镭*, 刘立涛, 钟帅, 刘刚, 2017. 基于自下而上方法的中国水泥生产碳排放强度演变趋势分析. 资源科学, 39(12), pp.2344-2357.

2016

  1. Cao, Z., Shen, L.*, Zhao, J.*, Liu, L., Zhong, S., Sun, Y. and Yang, Y., 2016. Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China. Journal of Cleaner Production, 139, pp.527-539. https://doi.org/10.1016/j.jclepro.2016.08.070

  2. Cao, Z., Shen, L.*, Zhao, J.*, Liu, L., Zhong, S. and Yang, Y., 2016. Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement. Resources, Conservation and Recycling, 113, pp.116-126. https://doi.org/10.1016/j.resconrec.2016.06.011

  3. Cao, Z., Shen, L.*, Liu, L. and Zhong, S., 2016. Analysis on major drivers of cement consumption during the urbanization process in China. Journal of Cleaner Production, 133, pp.304-313. https://doi.org/10.1016/j.jclepro.2016.05.130

  4. 赵建安*, 郑宗强, 曹植, 姚建华, 2016. 中国水泥生产碳排放系数省区空间差异性及成因分析. 资源科学, 38(9), pp.1791-1800.

  5. 沈镭, 赵建安, 王礼茂, 刘立涛, 王燕, 姚予龙, 耿元波, 高天明, 曹植*, 2016. 中国水泥生产过程碳排放因子测算与评估. 科学通报, (26), pp.2926-2938.

  6. 孔含笑, 沈镭*, 钟帅, 曹植, 2016. 关于自然资源核算的研究进展与争议问题. 自然资源学报, 31(3), pp.363-376.

  7. 沈明, 沈镭*, 张超, 曹植, 孔含笑, 2015. 美国城市化背景下的砂石资源管理体系及相关政策研究. 中国矿业, 24(11), pp.5-8.