1445
当前位置: 首页   >  成果及论文
成果及论文

After join SWJTU

[22]. P. Dong*(通讯作者), Y. Cha, X. Zhang, J. Zamora, M.-K. Song*. Poly(ethylene) Oxide Electrolytes for All-Solid-State Lithium Batteries Using Microsized Silicon/Carbon Anodes with Enhanced Rate Capability and Cyclability. ACS Appl. Mater. Inter.2024, 16, 41018–41026. (IF:8.3) 


Before join SWJTU

[21]. T. Duan, H. Cheng*, Y. Liu, Q. Sun, W. Nie, X. Lu*, P. Dong*(通讯作者), M.-K. Song. A Multifunctional Janus Layer for LLZTO/PEO Composite Electrolyte with Enhanced Interfacial Stability in Solid-State Lithium Metal Batteries. Energy Stor. Mater., 2024 (65), 103091. (IF:18.9)


[20]. P. Dong#, X. Zhang#, W. Hiscox, J. Liu, J. Zamora, X. Li, M. Su, Q. Zhang, X. Guo, J. McCloy, M.-K. Song*. Towards High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties. Adv. Mater., 2023, 35, 2211841. (IF:29.4)

Toward High‐Performance Metal–Organic‐Framework‐Based Quasi‐Solid‐State ...


[19]. P. Dong, X. Zhang, J. Zamora, J. McCloy, M.-K. Song*. Silk Fibroin-based Biopolymer Composite Binders with Gradient Binding Energy and Strong Adhesion Force for High-Performance Micro-Sized Silicon Anodes. J. Energy Chem., 2023, 80, 442–451. (IF:13.1)

西南交通大学教师主页 董盼盼--中文主页-- Silk Fibroin-based Biopolymer Composite Binders ...


[18]. P. Dong, X. Zhang, K.S. Han, Y. Cha, M.-K. Song*. Deep Eutectic Solvent-based Polymer Electrolyte for Solid-State Lithium Metal Batteries. J. Energy Chem., 2022, 70,363–372. (IF:13.1) 


[17]. P. Dong, X. Zhang, Y. Cha, J.I. Lee, M.-K. Song*, In Situ Surface Protection of Lithium Metal Anode in Lithium–Selenium Disulfide Batteries with Ionic Liquid-Based Electrolytes, Nano Energy2020, 69, 104434. (IF:16.8) 


[16]. P. Dong, K.S. Han, J.I. Lee, X. Zhang, Y. Cha, M.-K. Song*, Controlled Synthesis of Sulfur-rich Polymeric Selenium Sulfides as Promising Electrode Materials for Long-life, High-rate Lithium Metal Batteries. ACS Appl. Mater. Inter.2018, 10 (35), 29565–29573. (IF:8.3) 


[15]. X. Zhang#, P. Dong#(共同一作), M.-K. Song*. Metal–Organic Frameworks for High-Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries & Supercaps 2019, 2, 591–626. (IF:6.043, Cover Feature) 

Description unavailable


[14]. L. Tian, Y. Liu, Z. Su, Y. Cao, W. Zhang, S. Yi, B. Niu, Y. Zhang, P. Dong*(通讯作者), D. Long*. A Lithiated Organic Nanofiber-Reinforced Composite Polymer Electrolyte Enabling Li-ion Conduction Highways for Solid-State Lithium Metal Batteries. J. Mater. Chem. A, 9, 23882-2380, 2021. (IF:14.511) 

A lithiated organic nanofiber-reinforced composite polymer electrolyte ...


[13]. L. Tian, Z. Yang, M. Wang, Y. Guo, K. Liang, B. Niu, Y. Zhang, P. Dong*(通讯作者), D. Long*. Click Chemistry-initiated Highly Uniform Semi-Interpenetrating Polymer Electrolyte with Dual Salts for High Performance lithium Metal Batteries. J. Power Sources, 565 (2023) 232884. (IF:9.794)  


[12]. L. Tian, M. Wang, Y. Liu, Z. Su, B. Niu, Y. Zhang, P. Dong*(通讯作者), D. Long*. Multiple Ionic Conduction Highways and Good Interfacial Stability of Ionic Liquid-Encapsulated Cross-linked Polymer Electrolytes for Lithium Metal Batteries. J. Power Sources, 543 (2022) 231848. (IF:9.794)       

      

[11]. Z. Zhang, L. Tian, H. Zhang, H. Xu, P. Dong*(通讯作者), Y. Zhang*, D. Long*. Hexagonal Rod-like Cu-MOF-74-derived Fillers Reinforced Composite Polymer Electrolyte for High-performance Solid-state Lithium Batteries. ACS Appl. Energy Mater., 2022, 5, 1, 1095–1105. (IF:6.959)  


[10]. S. Yang, X. Tian, Q. Zhang*, J. Jiang, P. Dong, J. Tan, Y. Meng, P. Liu, H. Bai, J. Song. Microorganism Inspired Hydrogels: Optimization by Response Surface Methodology and Genetic Algorithm based on Artificial Neural Network. European Polymer Journal, 2023, 201, 112497. (IF:6.0) 


[9]. Q. Zhang*, P. Dong, L. Chen, X. Wang, S. Lu. Genipin‐cross‐linked thermosensitive silk sericin/poly(N‐isopropylacrylamide) hydrogels for cell proliferation and rapid detachment. J. Biomedical Mater. Research Part A, 2014, 102(1), 76-83. (IF:4.854)

[8]. X. Zhang, P. Dong, S. Noh, X. Zhang, Y. Cha, S. Ha, J.-H. Jang, M.-K, Song*. Unravelling the Complex LiOH-Based Cathode Chemistry in Lithium–Oxygen Batteries. Angew. Chem. Int. Ed., 2023, 62, e202212942. (IF:16.82)

Description unavailable


[7]. X. Zhang, P. Dong, J.I. Lee, Y. Cha, M.-K. Song*. Enhanced Cycling Performance of Rechargeable Li–O2 batteries via LiOH Formation and Decomposition Using High-Performance MOF-74@CNTs Hybrid Catalysts. Energy Stor. Mater., 2019 (17), 167–177. (IF=18.9)


[6]. X. Zhang, P. Dong, M.-K. Song*. Advances in Lithium–Oxygen Batteries Based on LiOH Formation and Decomposition. Frontiers in Chemistry, 10, 923936, 2022. (IF=5.545, Invited Review & Rising stars in Electrochemistry 2021)

[5]. X. Zhang#, C.Y. Chuah#, P. Dong, Y. Cha, T.H. Bae*, M.-K. Song*. Hierarchically Porous Co-MOF-74 Hollow Nanorods for Enhanced Dynamic CO2 Separation. ACS Appl. Mater. Inter., 2018, 10(50), 43316–43322. (IF=8.3)

Figure 1


[4]. U.J. Ryu, W.H. Choi, P. Dong, J. Shin*, M.-K. Song*, K.M. Choi*. Comparing Internal and Interparticle Space Effects of Metal–Organic Frameworks on Polysulfide Migration in Lithium–Sulfur Batteries. Nanomaterials 2021, 11(10), 2689. (IF=5.719) 

[3]. Y. Cha, J.I. Lee, P. Dong, X. Zhang, M.-K. Song*. Novel CO2-Thermic Oxidation Process with Mg-Based Intermetallic Compounds and Its Application to Energy Storage Materials. ChemRxiv, 2018, doi: https://doi.org/10.26434/chemrxiv.6838478.v1. 

[2]. S. Feng, H. Zhong, J. Song, C. Zhu, P. Dong, Q. Shi, D. Liu, J. Li, Y.C. Chang, S. P. Beckman, M.-K. Song, D. Du, Y. Lin*. Catalytic Activity of Co-X (X= S, P, O) and its Dependency on Nanostructure/Chemical Composition in Lithium-Sulfur Batteries. ACS Appl. Energy Mater., 2018, 1(12), 7014–7021. (IF=6.959)


[1]. J. Song#, S. Feng#, C. Zhu, J.I. Lee, S. Fu, P. Dong, M.-K. Song*, Y. Lin*. Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium–sulfur batteries performance. Electrochimica Acta, 2017, 248, 541–546. (IF=7.336)