5830
当前位置: 首页   >  成果及论文
成果及论文

一、代表性论文

Yang, P.*, van der Tol, C., Liu, J., & Liu, Z. (2025). Separation of the direct reflection of soil from canopy spectral reflectance. Remote Sensing of Environment, 316, 114500 https://doi.org/10.1016/j.rse.2024.114500 

Yang, P.*, 2024. Downscaling canopy photochemical reflectance index to leaf level by correcting for the soil effects. Remote Sensing of Environment311, p.114250.  https://doi.org/10.1016/j.rse.2024.114250

Yang, P. *, (2022), Exploring the interrelated effects of soil background, canopy structure and sun-observer geometry on canopy photochemical reflectance index. Remote Sensing of Environment, 279, 113133. https://doi.org/10.1016/j.rse.2022.113133

Yang, P., Prikaziuk, E., Verhoef, W., & van Der Tol, C.* (2021). SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geoscientific Model Development, 14(7), 4697-4712. https://doi.org/10.5194/gmd-14-4697-2021

Yang, P.*, Van der Tol, C., Campbell, P. K., & Middleton, E. M. (2021). Unravelling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship. Biogeosciences, 1-32.https://doi.org/10.5194/bg-18-441-2021

Yang, P.*, Verhoef, W., Prikaziuk, E., & van der Tol, C. (2021). Improved retrieval of land surface biophysical variables from time series of Sentinel-3 OLCI TOA spectral observations by considering the temporal autocorrelation of surface and atmospheric properties. Remote Sensing of Environment, 256, 112328.https://doi.org/10.1016/j.rse.2021.112328

Yang, P.*, van der Tol, C., Tiangang Yin., Verhoef, W. (2020). The SPART model: a soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum. Remote Sensing of Environment, 247, 11187.https://doi.org/10.1016/j.rse.2020.111870

Yang, P.*, van der Tol, C., Campbell, P. and Middleton, E., (2020). Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111676.https://doi.org/10.1016/j.rse.2020.111676

Yang, P.*, Verhoef, W., van der Tol, C., (2020). Unified four-stream radiative transfer theory in the optical-thermal domain with consideration of fluorescence for multi-layer vegetation canopies. Remote Sensing.https://doi.org/10.3390/rs12233914

Yang, P.*, van der Tol, C., Verhoef, W., Damm, ... & Rascher, U., 2019. Using reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence, Remote Sensing of Environment, 231.https://doi.org/10.1016/j.rse.2018.11.039

Yang, P.*, van der Tol, C., 2018. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sensing of Environment, 209, 456 – 467.https://doi.org/10.1016/j.rse.2018.02.029

Yang, P.*, Verhoef, W., van der Tol, C., 2017. The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sensing of Environment, 201, 1 - 11.https://doi.org/10.1016/j.rse.2017.08.029

Yang, P.*, van der Tol, C. (2018), A spectral invariant approach to modelling radiative transfer of sun-induced chlorophyll fluorescence. IEEE Geoscience and Remote Sensing Symposium (IGARSS).https://doi.org/10.1109/IGARSS.2018.8517742

Yang, P., Liu, Z.*, (2013) Remote sensing of solar-induced chlorophyll fluorescence from an unmanned airship platform. IEEE Geoscience and Remote Sensing Symposium (IGARSS).https://doi.org/10.1109/IGARSS.2013.6723402


Wang, Z., Liu, J.*, Sheng, Y. & Yang, X. 2024. Intercomparison of the DART model and GEDI simulator for simulating GEDI waveforms in forests. International Journal of Applied Earth Observation and Geoinformation 134, 104148,  https://doi.org/10.1016/j.jag.2024.104148

Liu, J.*, Li, L., Akerblom, M., Wang, T., Skidmore, A., Zhu, X., & Heurich, M. 2021. Comparative Evaluation of Algorithms for Leaf Area Index Estimation from Digital Hemispherical Photography through Virtual Forests. Remote Sensing, 2021, 13(16), 3325 https://doi.org/10.3390/rs13163325

Liu, J.*, Wang, T., Skidmore, A.K., Jones, S., Heurich, M., Beudert, B., Premier, J., 2019. Comparison of terrestrial LiDAR and digital hemispherical photography for estimating leaf angle distribution in European broadleaf beech forests, ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158: 76-89. https://doi.org/10.1016/j.isprsjprs.2019.09.015

Liu, J.*, Skidmore, A.K., Wang, T., Zhu, X., Premier, J., Heurich, M., Beudert, B., Jones, S., 2019. Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 208-220. (入选期刊Featured Article) https://doi.org/10.1016/j.isprsjprs.2019.01.005

Liu, J.*, Skidmore, A.K., Jones, S., Wang, T., Heurich, M., Zhu, X., Shi, Y., 2018. Large off-nadir scan angle of airborne LiDAR can severely affect the estimates of forest structure metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 13-25. (入选期刊Featured Article) https://doi.org/10.1016/j.isprsjprs.2017.12.004

Liu, J.*, Skidmore, A.K., Heurich, M., Wang, T.*, 2017. Significant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests. ISPRS Journal of Photogrammetry and Remote Sensing, 132, 77-87.  (入选期刊Featured Articlehttps://doi.org/10.1016/j.isprsjprs.2017.08.005

Liu, J., Li, P.*, Wang, X., 2015.A new segmentation method for very high resolution imagery using spectral and morphological information. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 145-162. https://doi.org/10.1016/j.isprsjprs.2014.11.009


Li, L., Zhan, W.*, et al., 2023. Divergent urbanization-induced impacts on global surface urban heat island trends since

1980s. Remote Sensing of Environment, 295, 113650.(中科院一区 TOP, IF: 13.5)https://doi.org/10.1016/j.rse.2023.113650

Li, L., Zhan, W.*, et al., 2023. Competition between biogeochemical drivers and land-cover changes determines urban

greening or browning. Remote Sensing of Environment, 287, 113481.(中科院一区 TOP, IF: 13.5)https://doi.org/10.1016/j.rse.2023.11348

Li, L., Zhan, W.*, et al., 2022. Long‐Term and Fine‐Scale Surface Urban Heat Island Dynamics Revealed by Landsat Data

Since the 1980s: A Comparison of Four Megacities in China. Journal of Geophysical Research: Atmospheres, 127,

e2021JD035598.(中科院二区 TOP, Nature Index 期刊, IF: 4.4)https://doi.org/10.1029/2021JD035598

Li, L., Zha, Y.*, et al., 2020. Using Prophet Forecasting Model to Characterize the Temporal Variations of Historical and

Future Surface Urban Heat Island in China. Journal of Geophysical Research: Atmospheres, 125, e2019JD031968.(中

科院二区 TOP, Nature Index 期刊, IF: 4.4)

Li, L., Zha, Y.*, et al., 2020. Spatially non-stationary effect of underlying driving factors on surface urban heat islands in

global major cities. International Journal of Applied Earth Observation and Geoinformation, 90, 102131.(中科院

一区 TOP, IF: 7.5)

6)Li, L.,  Zha, Y.*, 2020. Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends.

Sustainable Cities and Society, 60, 102282.(中科院一区 TOP, IF: 11.7)


二、教学及人才培养

2024,江苏省高校测绘地理信息本科生优秀毕业论文,一等奖指导老师,杨沛琦

2024,第一届高光谱遥感数据处理与应用大赛,三等奖指导老师,杨沛琦

2023,全国高等学校测绘学科教学创新与育才能力大赛青年教师讲课竞赛,特等奖 (刘婧)

2023,第七届全国激光雷达大会数据处理大赛,特等奖指导老师,刘婧

2020,第九届全国大学生GIS应用技能大赛,特等奖指导老师,刘婧

南京师范大学“优秀毕业生”、“优秀研究生”:张娅、刘先伟

南京师范大学“优秀毕业生”、“三好学生”、“优秀学生干部”:陈少洋(保研空天院)