5825
当前位置: 首页   >  组员介绍   >  李龙
李龙 讲师    


1、个人基本情况

李龙,男,四川绵阳人,讲师。主要从事热环境遥感、植被遥感与全球变化等研究。以一作/通讯在RSE、JGR-A等期刊发表论文16篇。担任RSE在内的20余本SCI期刊审稿人。


2、研究方向

1)热环境遥感:致力于构建地温数据重建模型,生产具有长时序且高空间分辨率的地温数据集,并将其应用于城市热环境格局、演变以及机制研究。

2) 植被遥感:提出城市植被变化归因的概念模型,分离人为因素与自然因素对城市植被变化的影响,并探究植被格局及其变化对热环境的反馈作用。


3、工作经历

2024.09至今,南京师范大学,地理科学学院,讲师


4、教育经历

2020.09~2024.08,南京大学地理与海洋科学学院,地理学,博士

2017.09~2020.06,南京师范大学地理科学学院,地图学与地理信息系统,硕士

2013.09~2017.06,成都理工大学地球物理学院,空间信息与数字技术,学士


5、荣誉获奖

获得研究生国家奖学金3次


6、承担(参与)的科研项目

1)江苏省研究生科研与实践创新计划,科研计划项目,21世纪初中国植被增长对气候变暖的影响及机制,2018.6~2019.5,结题,主持

2)江苏省研究生科研与实践创新计划,科研计划项目,陆地卫星支持下全球精细热岛逐年动态及长期趋势研究,2022.6~2023.5,结题,主持



7、近年发表的期刊论文(*通讯作者)

1)Li, L., Zhan, W.*, et al., 2023. Divergent urbanization-induced impacts on global surface urban heat island trends since

1980s. Remote Sensing of Environment, 295, 113650.(中科院一区 TOP, IF: 13.5)https://doi.org/10.1016/j.rse.2023.113650

2)Li, L., Zhan, W.*, et al., 2023. Competition between biogeochemical drivers and land-cover changes determines urban

greening or browning. Remote Sensing of Environment, 287, 113481.(中科院一区 TOP, IF: 13.5)https://doi.org/10.1016/j.rse.2023.11348

3)Li, L., Zhan, W.*, et al., 2022. Long‐Term and Fine‐Scale Surface Urban Heat Island Dynamics Revealed by Landsat Data

Since the 1980s: A Comparison of Four Megacities in China. Journal of Geophysical Research: Atmospheres, 127,

e2021JD035598.(中科院二区 TOP, Nature Index 期刊, IF: 4.4)https://doi.org/10.1029/2021JD035598

4)Li, L., Zha, Y.*, et al., 2020. Using Prophet Forecasting Model to Characterize the Temporal Variations of Historical and

Future Surface Urban Heat Island in China. Journal of Geophysical Research: Atmospheres, 125, e2019JD031968.(中

科院二区 TOP, Nature Index 期刊, IF: 4.4)

5)Li, L., Zha, Y.*, et al., 2020. Spatially non-stationary effect of underlying driving factors on surface urban heat islands in

global major cities. International Journal of Applied Earth Observation and Geoinformation, 90, 102131.(中科院

一区 TOP, IF: 7.5)

6)Li, L.,  Zha, Y.*, 2020. Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends.

Sustainable Cities and Society, 60, 102282.(中科院一区 TOP, IF: 11.7)

7)Li, L., Zha, Y.*, et al., 2020. Effect of terrestrial vegetation growth on climate change in China. Journal of

Environmental Management, 262, 110321.(中科院二区 TOP, IF: 8.7)

8)Li, L.,  Zha, Y.*, et al., 2020. Relationship of surface urban heat island with air temperature and precipitation in global

large cities. Ecological Indicators, 117, 106683.(中科院二区 TOP, IF: 6.9)

9)Li, L., Zha, Y.*, et al., 2020. Spatial and dynamic perspectives on surface urban heat island and their relationships with

vegetation activity in Beijing, China, based on Moderate Resolution Imaging Spectroradiometer data. International

Journal of Remote Sensing, 41,1-15.(中科院三区, IF: 3.4)

10)Li, L.,  Zha, Y.*, 2019. Satellite-based spatiotemporal trends of canopy urban heat islands and associated drivers in China’s

32 major cities. Remote Sensing, 11(1), 102.(中科院二区, IF: 5.0)

11)Li, L.,  Zha, Y.*, 2019. Satellite-based regional warming hiatus in China and its implication. Science of the Total

Environment, 648, 1394-1402.(中科院一区 TOP, IF: 9.8)

12)Li, L.,  Zha, Y.*, 2019. Estimating monthly average temperature by remote sensing in China. Advances in Space

Research, 63, 2345-2357.( IF: 2.6)

13)Chen, J., Li, L.*, 2019. Regional economic activity derived from MODIS data: A comparison with DMSP/OLS and

NPP/VIIRS nighttime light data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 12, 3067-3077.( IF: 5.5)

14)Li, L., Zha, Y.*, 2018. Mapping relative humidity, average and extreme temperature in hot summer over China. Science of

the Total Environment, 615, 875-881.(中科院一区 TOP, IF: 9.8)

15)Li, L., Huang, X.*, et al., 2017. Quantifying the spatiotemporal trends of canopy layer heat island (CLHI) and its driving

factors over Wuhan, China with satellite remote sensing. Remote Sensing, 9, 536.(中科院二区 TOP, IF: 5.0)

16)Li, L., Liu, R.*, et al., 2017. A novel genetic algorithm for optimization of conditioning factors in shallow translational

landslides and susceptibility mapping. Arabian Journal of Geosciences, 10, 209.