26430
当前位置: 首页   >  成果及论文
成果及论文
  1. 杨茜†, 孟祥兵†, 王春, 刘婷婷, 王克剑, 余泓, 饶玉春*, 邹金鹏*. 利用水稻转化愈伤组织评估引导编辑效率[J]. 科学通报, 2024, 69:1-9.

  2. 胡风越, 王健, 王春, 王克剑*,  刘朝雷*. 水稻 DMP1-3 基因突变体的创制及其单倍体诱导能力鉴定[J].中国水稻科学, 2024, https://link.cnki.net/urlid/33.1146.S.20240206.0935.002

  3. Yan, H†., Jiao, X†., Chen, Y., Liang, H., Liang, W*., Liu, C*. (2024) Knockout of OsHMA3 in an indica riceincreases cadmium sensitivity andinhibits plant growth. Plant Growth Regulation, DOI:10.1007/s10725-024-01137-x.

  4. Sun, T., Liu, Q., Chen, X., Hu, F., and Wang, K. (2024) Hi-TOM 2.0: an improved platform for high-throughput mutation detection. SCIENCE CHINA Life Sciences, DOI:10.1007/s11427-024-2555-x.

  5. Zou, J., Wang, C., Gao, C., Wang, K. (2024) Unlocking crop diversity: Enhancing variations through genome editing. 69(3):281-284.

  6. Liu, C#., Wang, J#., Lu, H., Huang, Y., Yan, H., Liang, H., Wang, C*., Wang K*. (2024) Engineering synthetic apomixis in different hybrid rice varieties using the Fix strategy. New Crops, 1:100003.

  7. Zhu, G., Zhang, L., Ma, L., Liu, Q., Wang, K., Li, J., Qu, G., Zhu, B., Fu, D.,  Luo, Y., Zhu, H. (2023) Efficient large fragment deletion in plants: double pairs of sgRNAs are better than dual sgRNAs. Horticulture Research, 10(10):uhad168.

  8. Ercolano, R*., Wang, K(2023) Editorial: Targeted genome editing for crop improvement. Frontiers in Plant Science, eCollection 2023.

  9. Wang, C., Wang, K., and Kou, Y*. (2023) Genome editing creates disease-resistant crops without yield penalties. Trends in Plant Science, 29(2):114-116.

  10. Sun, T*., Lu, H., Wang, K. (2023) Study on the origin of Asian cultivated rice based on 15 domestication regions. Genetic Resources and Crop Evolution, 70(6):1567-1574.

  11. Liu, T#., Zou, J#., Yang, X., Wang, K., Rao, Y., Wang, C. (2023) Development and Application of Prime Editing in Plants. Rice Science, 30(6):3

  12. Li, S., Wang, J., Jia, S., Wang, K*., and Li, H*. (2023) Synthetic apomixis: from genetic basis to agricultural application. Seed Biology, 2:10.

  13. Zou, J., Wang, K*. (2023) Precise and graded regulation of target protein expression in plants. Crop Design, 2(1): 100030.

  14. Wang, J., Yan, H., Jiao, X., Ren, J., Hu, F., Liang, H., Liang, W., and Liu, C*. (2023) Development of Specific Molecular and Phenotypic Marker-Based Haploid Inducers in Rice. Agronomy, 13(6): 1520.

  15. Xiong, J., Hu, F., Ren, J., Huang, Y., Liu, C., and Wang, K. (2023) Synthetic apomixis: the beginning of a new era. Current Opinion in Biotechnology, 79:102877. 

  16. Wei, X., Liu, C., Chen, X., Lu, H., Wang, J., Yang, S., and Wang, K*. (2023) Synthetic apomixis with normal hybrid rice seed production. Molecular Plant, 16(3): 489-492.

  17. Wei, X., Liu, Q., Sun, T., Jiao, X., Liu, C., Hu, F., Chen, X., and Wang, K*. (2022) Manipulation of genetic recombination by editing the transcriptional regulatory regions. Plant Communications, 4(2): 100474.

  18. Wang, K., Zhou, H., and Qian, Q. (2022) The rice codebook: From reading to editing. Molecular Plant, 15(4):569-572.

  19. Wang J., Cao Y., Wang K., and Liu C*. (2022) Agriculture Development of Multiple Heading Date mtl Haploid Inducer Lines in Rice. Agriculture, 12(6):806.

  20. Liu, C., He, Z., Zhang, Y., Hu, F., Li, M., Liu, Q., Huang, Y., Wang, J., Zhang, W*., Wang, C*., and Wang, K*. (2022) Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice . Plant Communications, 4(2): 100470.

  21. 李慧颖,刘庆,郭旻,王克剑,严长杰,王春. Hi-Meth:特定位点 DNA 甲基化高通量检测平台[J]. 生物工程学报,2022, 38(8): 3049-3061.

  22. 曹跃炫,严绘景,王克剑,刘朝雷*. 苗期快速分选水稻人工无融合生殖克隆种子. 中国水稻科学, 2022,36(6): 656-662.

  23. Zou, J., Meng, X., Liu, Q., Shang, M., Wang, K., Li, J., Yu, H., and Wang, C. (2022) Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Science China Life Science 65, 65(11):2328-2331.

  24. Huang, Y., Shang, M., Liu, T., Wang, K. (2022) High-throughput methods for genome editing: the more the better[J]. Plant Physiology, 188(4): 1731-1745.

  25. Liu, C., Cao, Y., Hua, Y., Du, G., Liu, Q., Wei, X., Sun, T., Lin, J., Wu, M., Cheng, Z., Wang, K.(2021) Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9Frontiers in Plant Science12:757152.

  26. Wang, K. Yuan Longping (1930–2021).  (2021) Nature Plants7(7):858-859.

  27. Liu, Q.,  Jiao, X.,  Meng, X.,  Wang, C., &  Wang, K.. (2021). FED: a web tool for foreign element detection of genome-edited organism. Science China Life Sciences, 64(1):167-17.

  28. Hu, D., Yu, Y., Wang, C., Long,Y., Liu, Y., Feng, L., Lu, D., Liu, Bo., Jia, J., Xia, Rui., Du, J., Zhong, X.,  Gong, L., Wang, K., Zhai, J. (2021). Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. The Plant Cell,  33(9): 2950-2964.

  29. Dong, H., Huang, Y., Wang, K. (2021). The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes, 12(6):912.

  30. Huang, Y., Dong, H., Shang M., Wang, K. (2021) CRISPR/Cas systems: The link between functional genes and genetic improvement. The Crop Journal, 9(3):678-687. 

  31. Xu, Y#., Meng, X#., Wang, J, Qin, B, Wang, K., Li, J, Wang, C*, Yu H*. (2020) ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Science China Life Sciences63(3):450-452.

  32. Hu, X#., Meng, X#., Li, J., Wang, K*., and Yu H*. (2020) Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays. The Crop Journal, 8(3): 403-407.

  33. Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., Lin, J., Wu, M., Sun, T., Cheng, Z., Mercier, R., Wang, K*. (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 37(3):283-287. (封面文章,详见CCTV新闻)

  34. Wang, K. (2019). Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1, 15-20.

  35. Wang, C., Wang, K*. (2019) Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. vol 1917. Humana Press, New York, NY.

  36. Wang, J#., Wang, C#., Wang, K*. (2019) Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 46(1): 61-64.

  37. Ren, J#., Hu, X#., Wang, K., Wang, C. (2019) Development and application of CRISPR/Cas system in rice. Rice Science, 26(2):69-76.

  38. Wang, J#., Meng, X#., Hu, X#., Sun, T., Li, J., Wang, K*., Yu H*. (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnology Journal, 17(4):709-711.

  39. Liu, Q#., Wang, C#., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K*. (2019) Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 62(1):1-7. (封面文章)

  40. Li, S#., Shen, L#., Hu, P., Liu, Q., Zhu, X., Qian, Q., Wang, K*., and Wang Y*. (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology, 61(12), 1201-1205.

  41. Hu, X#., Meng, X#., Liu, Q., Li, J*., and Wang K*. (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnology Journal, 16: 292-297. 

  42. Meng, X#., Hu, X#., Liu, Q., Song, X., Gao, C., Li, J*., and Wang, K*. (2018) Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Science China Life Sciences, v.61(01):124-127. 

  43. Shen, L#., Wang, C#., Fu, Y., Wang, J., Liu, Q., Zhang, X., Yan, C*., Qian, Q*., and Wang, K*. (2018) QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology, 61: 122-125. (封面文章、年度最佳论文)

  44. Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., Liu, Z., Zhou, Y., Peng, J., Wang, K., Huang, X., Xiao, S., Zuo, J. (2018) S-Nitrosy lation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Molecular Cell, 71(1):142-154.

  45. Hua, Y#., Wang, C#., Huang, J#., and Wang, K*. (2017) A simple and efficient method for CRISPR/Cas9 mutant screening. Journal of Genetics and Genomics, 44:213.

  46. Hu, X#., Wang, C#., Liu, Q., Fu, Y., and Wang, K*. (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system.Journal of Genetics and Genomics, 44:71-73. 

  47. Shen, L#., Hua, Y#., Fu, Y#., Li, J#., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C*., and Wang, K*. (2017) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences,5:506-515. (基因编辑专刊)

  48. Zhang P., Zhang Y., Sun L., Sinumporn S., Yang Z., Sun B., Xuan D., Li Z., Yu P., Wu W., Wang K., Cao L., Cheng S. (2017) The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Frontiers in Plant Science, 8:0-1639.

  49. Hu, X#., Wang, C#., Fu, Y#., Liu, Q., Jiao, X., and Wang, K*. (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Molecular Plant, 9:943-945.

  50. Wang, K*., Wang, C., Liu, Q., Fu, Y. (2015) Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice. Molecular Plant, 8:1295-1298.

  51. Wang, C#., Shen, L#., Fu, Y., Yan, C., Wang, K*. (2015) A simple CRISPR/Cas9 system for multiplex genome editing in rice. Journal of Genetics and Genomics, 42:703-706.

  52. Che, L#., Wang, K#., Tang, D., Liu, Q., Chen, X., Li, Y., Hu, Q., Shen, Y., Yu, H., Gu, M., et al. (2014) OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genetics, 10:e1004405.

  53. Wu, X#., Tang, D#., Li, M#., Wang, K., Cheng, Z*. (2013) Loose plant architecture 1, an INDETERMINATE domain protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiology, 161:317-329.

  54. Ji, J#., Tang D#., Wang, M., Li, Y., Zhang L, Wang, K., Li, M., and Cheng, Z*. (2013) MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma, 122:363-376.

  55. Luo, Q#., Tang, D#., Wang, M., Luo, W., Zhang, L., Qin, B., Shen, Y., Wang, K., Li, Y., Cheng, Z*. (2013) The role of OsMSH5 in crossover formation during rice meiosis. Molecular Plant, 6:729-742.

  56. Wang, K#., Wang, M#., Tang, D#., Shen, Y., Miao, C., Hu, Q., Lu, T., Cheng, Z*. (2012) The role of HEI10 in crossover formation in rice. PLoS Genetics, 8:e1002809.

  57. Ji, J#., Tang, D#., Wang, K., Wang, M., Che, L., Li, M., Cheng, Z*. (2012) The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. The Plant Journal, 72:18-30.

  58. Hong, L#., Tang, D#., Zhu, K#., Wang, K., Li, M., and Cheng, Z*. (2012) Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. The Plant Cell, 24:577-588.

  59. Wang, M#., Tang, D#., Luo, Q., Jin, Y., Shen, Y., Wang, K., Cheng, Z*. (2012) BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. The Plant Cell, 24:4961-4973.

  60. Shen, Y#., Tang, D#., Wang, K., Wang, M., Huang, J., Luo, W., Luo, Q., Hong, L., Li, M., Cheng, Z*. (2012) The role of ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. Journal of Cell Science, 125:2581-2591.

  61. Hong, L#., Tang, D#., Shen, Y., Hu, Q., Wang, K., Li, M., Lu, T., and Cheng, Z*. (2012) MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytologist, 196:402-413.

  62. Hong, L., Qian, Q., Tang, D., Wang, K., Li, M., and Cheng, Z*. (2012) A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta, 236:141-151.

  63. Wang, K#., Wang, M#., Tang, D#., Shen, Y., Qin, B., Li, M., and Cheng, Z*. (2011) PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Molecular Biology of the Cell, 22:12-19.

  64. Che, L#., Tang, D#., Wang, K., Wang, M., Zhu, K., Yu, H., Gu, M., and Cheng, Z*. (2011) OsAM1 is required for leptotene-zygotene transition in rice. Cell Research, 21:654-665.

  65. Shao, T#., Tang, D#., Wang, K., Wang, M., Che, L., Qin, B., Yu, H., Li, M., Gu, M., and Cheng, Z*. (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiology, 156:1386-1396.

  66. Wang, M., Tang, D., Wang, K., Shen, Y., Qin, B., Miao, C., Li, M., and Cheng, Z*. (2011) OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. The Plant Journal, 67:583-594.

  67. Li, M., Tang, D., Wang, K., Wu, X., Lu, L., Yu, H., Gu, M., Yan, C*., and Cheng, Z*. (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 9:1002-1013.

  68. Qin, B., Tang, D., Huang, J., Li, M., Wu, X., Lu, L., Wang, K., Yu, H., Chen, J., Gu, M., and Cheng, Z*. (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Molecular Plant, 4:985-995.

  69. Wang, K#., Tang, D#., Hong, L., Xu, W., Huang, J., Li, M., Gu, M., Xue, Y*., Cheng, Z*. (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 6:e1000818. (封面文章)

  70. Wang, M., Wang, K., Tang, D., Wei, C., Li, M., Shen, Y., Chi, Z., Gu, M., Cheng, Z*. (2010) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. The Plant Cell, 22:417-430.

  71. Yu, H#., Wang, M#., Tang, D., Wang, K., Chen, F., Gong, Z., Gu, M.*, and Cheng, Z*. (2010) OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma, 119:625-636.

  72. Wang, K., Tang, D., Wang, M., Lu J., Yu, H., Liu, J., Qian, B., Gong, Z., Wang, X., Chen, J., Gu, M., and Cheng, Z*. (2009) MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. Journal of Cell Science, 122:2055-2063.