7656
当前位置: 首页   >  成果及论文
成果及论文

研究项目与课题

1.       National Natural Science Foundation of China国家自然科学基金,/过渡金属双掺杂钙钛矿复合阴极的构筑及电解CO2机理研究22378268),2024/01-2027/1250万元,项目负责人;

2.       National Natural Science Foundation of China国家自然科学基金,氧化铈-碳酸复合材料H+/O2-导电特性及高效电解制氢性能(51402093),2015/01-2017/1225万元,项目负责人,已结题,结题编号:51806001-1635

3.       National Natural Science Foundation of Guangdong Province广东省自然科学基金,固体氧化物电解池双掺杂溶出钙钛矿氧化物阴极材料设计、合成与CO2还原性能研究(2024A1515012212),2024.01-2026.1215万元,项目负责人;

4.       Natural Science Foundation of Guangdong Province广东省自然科学基金,纳米钙钛矿氧化物-金属-NCNT多异质界面氧电催化剂的结构设计、合成与电催化性能研究(2021A1515012356),2021.01-2023.1210万元,项目负责人;

5.       Natural Science Foundation of Guangdong Province广东省自然科学基金,基于氧化还原结构稳定的钙钛矿氧化物单层燃料电池研究(2017A030313289),2017.05-2020.0510万元,项目负责人,已结题,结题通过;

6.       Research Grant for Scientific Platform and Project of Guangdong Provincial Education office, 广东省教育厅项目,碳纳米管表面修饰钙钛矿氧化物及其氧电催化性能研究2019KTSCX151),2020.01-2021.1210万元,项目负责人,已结题,结题号:2019KTSCX151-221120

7.       Shenzhen Government’s Plan of Science and Technology深圳市科创委基础研究(自由探索)项目,纳米钙钛矿氧化物-金属-NCNT“三效电催化剂的结构设计、制备及其性能优化研究(JCYJ20180305125247308),2019.02-2021.0130万元,项目负责人;

8.       Shenzhen Government’s Plan of Science and Technology深圳市科创委基础研究(自由探索)项目,稳定高效钙钛矿单层燃料电池研究(JCYJ20170302141158010),2017.06.-2019.0530万元,项目负责人,已结题;

发表论文清单

Research ID: H-1418-2011. Total SCI citation times: 4576, H-index: 39

Google Scholar: Citation numbers: 5612, H-index: 43, i10 index: 84

Scopus ID: 37014518700, Total citation times: 4884, H-index:40

ORCID: 0000-0002-5485-9553

Selected publications

[1]   Zhu B.#*, Fan L.#,*, Mushtaq N.#, Raza R.*, Sajid M.c, Wu Y., Lin W, Kim J-S., Lund P.D., Yun S.* Semiconductor Electrochemistry for Clean Energy Conversion and Storage, Electrochemical Energy Reviews, 4 (2021) 757-792, https://doi.org/10.1007/s41918-021-00112-8. (IF28.905)

[2] Ye W.#, Hu Q.#, Zhao H., Jing Y., Singh M., Fan L.* In situ reconstruction of proton conductive electrolyte from self-assembled perovskite oxide-based nanocomposite for low temperature ceramic fuel cells, Chem Eng J 497 (2024), 154977. https://doi.org/10.1016/j.cej.2024.154977.

[3]   Li F., Yin Y., Zhang C., Li W., Maliutina K., Zhang Q., Wu Q., He C., Zhang Y., Yang M.*, Fan L.*, Enhancing oxygen reduction performance activity of oxide-CNT through in-situ generated nanoalloy bridging, Applied Catalysis B: Environmental. 263 (2020) 118297. https://doi.org/10.1016/j.apcatb.2019.118297. 中科院大类一区,IF: 16.683

[4] Li Y. M. Singh, Jing Y., He C., Fan L.* Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode, Science China Materials, 64 (2021) 1114, https://doi.org/10.1007/s40843-020-1531-7.中科院大类一区Top SCI, IF: 8.273 国内材料类旗舰期刊

[5] Li F., Mushtaq N., Su T., Cui Y., Huang J., Sun M., Singh M., Zhao X., Maliutina K., Zhang Y., He C., Yang M.*, Zhu B., Fan L.*, NCNT grafted perovskite oxide as an active bifunctional hybrid electrocatalyst for zinc-air battery, Materials Today Nano, 21 (2023) 100287 https://doi.org/10.1016/j.mtnano.2022.100287. 中科院大类一区, IF:13.364

[6] Lin W., Su W., Li Y., Chiu T.-W.*, Singh M., Pan Z.*Fan L.* Enhancing electrochemical COreduction on perovskite oxide for solid oxide electrolysis cells through in situ A-site deficiencies and surface carbonate deposition induced by lithium cation doping and exsolution. Small, 2023, 2303305. https://doi.org/10.1002/smll.202303305.

[7] Fan L.*, Zhu B.*, Su P.-C.*, He C*. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45 (2018) 148 https://doi.org/10.1016/j.nanoen.2017.12.044. 中科院大类一区SCI, IF15.548, ESI高引(1%)和热点(1‰)论文

[8] Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L.*, Asefa T.*, Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction, J. Mater. Chem. A, 7 (2019) 18030. http://dx.doi.org/10.1039/C9TA04374H. 中科院大类一, IF: 11.301

[9] Fan L., Wang C., Zhu B. Low temperature ceramic fuel cells using all nano composite materials. Nano Energy, 1 (2012) 631. https://doi.org/10.1016/j.nanoen.2012.04.004. 中科院大类一区SCI, IF: 10.02

[10] Zhu B#.*, Huang Y.#, Fan L.#, Ma Y.#, Wang B., Xia C., Afzal M., Zhang B., Dong W., Wang H.* and Lund P. D*. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19 (2016) 156. https://doi.org/j.nanoen.2015.11.015. SCI一区, IF:10.268

[11] Zhu, B., Raza, R., Fan, L., Sun, C., Solid Oxide Fuel Cells: From Electrolyte-based to Electrolyte-free Devices, John Wiley & Sons, 2020. Online ISBN: 9783527812790, https://doi.org/10.1002/9783527812790.(第三编辑,完成近5万字撰写)

Journal Publications

[108] Ye W.#, Hu Q.#, Zhao H., Jing Y., Singh M., Fan L.* In situ reconstruction of proton conductive electrolyte from self-assembled perovskite oxide-based nanocomposite for low temperature ceramic fuel cells, Chem Eng J 497 (2024), 154977. https://doi.org/10.1016/j.cej.2024.154977.

[107] Kang S., Pan Z.*, Guo J., Zhou Y.*, Wang J.*, Fan L., Zheng C.,. Cha S. W, Zhong Z. Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production, Frontier in Energy, 2024, https://doi.org/10.1007/s11708-024-0945-5

[106] Yang R., Lin W., He Y.*, Singh M., Fan L.*. Revealing the detrimental CO2 reduction effect of La0.6Sr0.4FeO3-δ-derived heterostructure in solid oxide electrolysis cells, iScience, 2024, 109648. https://doi.org/10.1016/j.isci.2024.109648.

[105] liu Y.-C., Vasu D., Li G.-L., Jiang J., Chiu T.-W.*, Fan L.*, Ye Z.-l., Hu W.-H., Yonezawa T.*, Jian S. W. Bi-functional CoCr2O4 hollow-sphere for enhanced oxygen evolution reaction and photocatalyst for harmful environmental pollutants removal, Ceram Int, 2024, https://doi.org/10.1016/j.ceramint.2024.03.056.

[104] You Y-F, Vasu D., Jiang J., Liu Y-C, Tsang C-H, Chiu T-W.*, Fan L.*, Multifunctional hollow spherical delafossite: Massive electrocatalyst for water splitting and photocatalytic degradation of furaltadone antibiotic wastewater, J. Water Process Eng, 58 (2024) 104811. https://doi.org/10.1016/j.jwpe.2024.104811.

[103] Lin W., Li Y.*, Sighn M., Zhao H., Yang R., Su P.*, Fan L.* Electronic engineering and oxygen vacancy modification of La0.6Sr0.4FeO3-δ perovskite oxide by low-electronegativity sodium substitution for efficient CO2/CO fueled reversible solid oxide cells, Green Chem 26 (2024) 3202–3210, http://dx.doi.org/10.1039/D3GC04451C.

[102] Wu T.-H., Yu C.-L., Chen J.-H., Huang J.-R., Sakthinathan S., Kameoka S., Chiu T.-W.*, Lin C.-C., Fan L.*, Lee Y.-H., Chen P.-C. ZnCrXFe2-XO4 (X = 0-2) porous powder prepared through self-combustion glycine nitrate process and applied to methyl alcohol steam reforming for production of pure hydrogen, Int J Hydrogen Energy, 49 (2024) 724-735, https://doi.org/10.1016/j.ijhydene.2023.11.067

[101] Meng Y., Akbar M., Gao J., Singh M., Chiu T.-W., Wang B., Xia C.*, Fan L.* Superionic conduction of self-assembled heterostructural LSCrF-CeO2 electrolyte for solid oxide fuel cell at 375–550 °C, Appl Surf Sci 645 (2024) 158832. https://doi.org/10.1016/j.apsusc.2023.158832.

[100] Huang J., Su T., Zhao H., Li F.*, Chiu T.-W.*, Singh M., Wu Q., Fan L.*. Nano and phase engineering of Fe-Cu alloy exsolved perovskite oxide-based hetero-catalysts for efficient oxygen evolution reaction, Fuel, 2024, 356, 129479. https://doi.org/10.1016/j.fuel.2023.129479. 

[99] Luo S., Fan L.*. Promoted electrochemical performance of one-step sintered intermediate temperature solid oxide fuel cells using nanoscale electrodes, Materials Research Bulletin, 168 (2023) 112452, https://doi.org/10.1016/j.materresbull.2023.112452

[98] Lin W., Su W., Li Y., Chiu T.-W.*, Singh M., Pan Z.*, Fan L.* Enhancing electrochemical CO2 reduction on perovskite oxide for solid oxide electrolysis cells through in situ A-site deficiencies and surface carbonate deposition induced by lithium cation doping and exsolution. Small, 2023, 2303305. https://doi.org/10.1002/smll.202303305.

[97] Zhao H.#, Lin W.#, Yuan K.*, Singh M., Chiu T.-W.*, Fan L.* Demonstration of high-performance and stable metal-supporting semiconductor-ionic fuel cells. J Power Sources (2023) 233325. https://doi.org/10.1016/j.jpowsour.2023.233325.

[96] Hsu B.-Z.#, Yu C.-L. #, Sakthinathan S., Chiu T.-W.*, Yu B.-S., Lin C.-C., Fan L.*, Lee Y.-H. ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming, Catalysts 13 (2023) 762. https://doi.org/10.3390/catal13040762.

[95] Tong L., Fan L.*, Liang H.*, Platinum Intermetallic Nanoparticle Cathode Catalysts for Proton Exchange-Membrane Fuel Cells: Synthesis and Ordering Effect, Current Opinion in Electrochemistry, 39 (2023) 101281. https://doi.org/10.1016/j.coelec.2023.101281.

[94] Wang Z.#, Meng Y.#, Singh M., Jing Y., Asghar M. I., Lund P., Fan L.* Ni/NiO Exsolved Perovskite La0.2Sr0.7Ti0.9Ni0.1O3−δ for Semiconductor-Ionic Fuel Cells: Roles of Electrocatalytic Activity and Physical Junctions ACS Applied Materials & Interfaces, 15 (2023) 870 https://doi.org/10.1021/acsami.2c16002.

[93] Li F., Mushtaq N., Su T., Cui Y., Huang J., Sun M., Singh M., Zhao X., Maliutina K., Zhang Y., He C., Yang M.*, Zhu B., Fan L.*, NCNT grafted perovskite oxide as an active bifunctional hybrid electrocatalyst for zinc-air battery, Materials Today Nano, 21 (2023) 100287 https://doi.org/10.1016/j.mtnano.2022.100287. (IF:13.364, 中科院大类一区)

[92] Tong L., Yang Q.-Q., Shuai Li, Zhang L.-L., Zeng W.-J., Ding Y.-W., Fan L.*, Liang H.-W*. Building the Bridge of Small Organic Molecules to Porous carbons via Ionic Solid Principle, Nano Research, 16 (2023) 80 https://doi.org/10.1007/s12274-022-4997-8. (IF: 10.269,中科院大类一区)

[91] Hsu K-C, Yu C-L, Lei H-J, Sakthinathan S*, Chen P-C, Lin C-C, Chiu T-W*, Nagaraj K, Fan L.*, Lee Y-H. Modification of Electrospun CeO2 Nanofibers with CuCrO2 Particles Applied to Hydrogen Harvest from Steam Reforming of Methanol. Materials 15 (2022) 8770. https://doi.org/10.3390/ma15248770

[90] Vasu D, Keyan AK, Sakthinathan S, Yu C-L, You Y-F, Chiu T-W*, Fan L.*, Chen P-C. Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water. Catalysts 12 (2022) 1489. https://doi.org/10.3390/catal12111489

[89] Li Y., Li Y., Singh M., Li Z., Hu X., Fan L.*, Effects of ceria on the oxygen reduction activity and thermal cycling stability of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode for solid oxide fuel cells, ACS Applied Energy Materials, 5 (2022) 14391. https://doi.org/10.1021/acsaem.2c02949.

[88] Ganesh K. S., Fan L.*, Wang B.*, Zhu B*. Built-in Electric Field for Efficient Charge Separation and Ionic Transport in LiCoO2/SnO2 Semiconductor Junction Fuel Cells, ACS Appl Energy Mater 5 (2022) 12513, https://doi.org/10.1021/acsaem.2c02152.

[87] Liu J., Zhu D., Zhu C., Jing Y., Jia X., Zhang Y., Yang M., Yu J., Fan L., Imran Asghar M., Lund P. D. A heterostructure p-n junction constituting of fluorite and perovskite semiconductors for electrochemical energy conversion. Energy Convers Manag 269 (2022) 116107. https://doi.org/10.1016/j.enconman.2022.116107.

[86] Xiong D., Rasaki S. A., Li Y., Fan L., Liu C., Chen Z., Enhanced cathodic activity by tantalum inclusion at B-site of La0.6Sr0.4Co0.4Fe0.6O3 based on structural property tailored via camphor-assisted solid-state reaction, Journal of Advanced Ceramics 11 (2022) 1330-1342. https://doi.org/10.1007/s40145-022-0627-x.

[85] Zhuang Z., Li Y., Yu R., Xia L., Yang J., Lang Z., Zhu J., Huang J., Wang J., Wang Y., Fan L., Wu J., Zhao Y., Wang D., Li, Y.. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes, Nature Catalysis 5 (2022) 300-310. https://doi.org/10.1038/s41929-022-00764-9. SCI高引和热点论文

[84] Li Y.*, Li Y., Zhang S., Ren C., Jing Y., Cheng F., Wu Q., Lund P.*, Fan L*. Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells, ACS Applied Materials & Interfaces 14 (2022) 9138, https://doi.org/10.1021/acsami.1c23548.

[83] Maliutina K., Huang J., Su T., Yu J., Fan L.*, Biomass-derived Ta,N,S co-doped CNTs enriched carbon catalyst for efficient electrochemical oxygen reduction, Journal of Alloys and Compounds, 888 (2021) 161479, https://doi.org/10.1016/j.jallcom.2021.161479. (IF: 5.316)

[82] Qu P., Xiong D., Zhu Z., Gong Z., Li Y., Li Y., Fan L., Liu Z., Wang P., Liu C., Chen Z. Inkjet printing additively manufactured multilayer SOFCs using high quality ceramic inks for performance enhancement, Additive Manufacturing 48 (2021) 102394. https://doi.org/10.1016/j.addma.2021.102394.

[81] Zhu B.#*, Fan L.#,*, Mushtaq N.#, Raza R.*, Sajid M.c, Wu Y., Lin W, Kim J-S., Lund P.D., Yun S.* Semiconductor Electrochemistry for Clean Energy Conversion and Storage, Elctrochemical Energy Reviews, 4 (2021) 757-792, https://doi.org/10.1007/s41918-021-00112-8. (IF28.905)

 [80] Yu L., Huang J., Li Y., Jing Y., Maliutina K., Ma R.*, Fan L.*, Electrochemical performance of low temperature solid oxide fuel cells using syngas from pyrolytic urban sludge, Ceramics International, 47 (2021) 16956 https://doi.org/10.1016/j.ceramint.2021.02.268.

[79] Maliutina K., He C., Xu K., Yin Y., He C., Fan L.*, Structural and electronic engineering of biomass-derived carbon nanosheets for boosting oxygen reduction reaction, Sustainable Energy & Fuels, 5 (2021) 2114-2126, https://doi.org/10.1039/D0SE01631D.

[78] Hu E.#, Jiang Z. #, Fan L.#*, singh M.#, Wang F., R. Raza*, M. Sajid, J. Wang, J. S. Kim*, and B. Zhu*, Junction and Energy Band on Novel Semiconductor-based Fuel Cells, iScience, 24 (2021) 102129, https://doi.org/10.1016/j.isci.2021.102191.

[77] Li Y. M. Singh, Jing Y., He C., Fan L.* Demonstration of reversible CO/CO2 conversion on a phase-transformed fuel electrode in solid oxide cells, Science China Materials, 64 (2021) 1114-1126, https://doi.org/10.1007/s40843-020-1531-7. 中科院大类一区SCI, IF: 6.098.

[76] Li, W., Yin, Y., Xu, K., Li, F., Maliutina, K., Wu, Q., Li, C., Zhu, B., Fan, L.*, Enhancement of oxygen evolution activity of perovskite (La0.8Sr0.2)0.95MnO3-δ electrode by Co phase surface modification, Catal. Today, 364 (2021) 148-156, https://doi.org/10.1016/j.cattod.2020.02.015. 中科院大类二区SCI, IF: 6.766

[75] Li Y., Yu L., Yu Y., Maliutina K., Wu Q., He C., Fan L.* Understanding CO2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method, International Journal Hydrogen Energy, 46 (2021) 9646, https://doi.org/10.1016/j.ijhydene.2020.07.141. 中科院大类二区SCI, IF: 5.816

[74] Jing Y., Zhou X., Lund P., Chen C., Fan L.*, Electrochemical impact of the carbonate in ceria-carbonate composite for low temperature solid oxide fuel cell, International Journal Hydrogen Energy, 46 (2021) 9898, https://doi.org/10.1016/j.ijhydene.2020.05.065. 中科院大类二区SCI, IF: 5.816

[73] Li Y., Li Y., Yu L., Hu Q., Wang Q., Maliutina K., Fan L.* Achieving excellent and durable CO2 electrolysis performance on a dual-phase fuel electrode in solid oxide electrolysis cells, Journal of Power sources, 491 (2021) 229599, https://doi.org/10.1016/j.jpowsour.2021.229599. 中科院大类一区SCI, IF: 8.247

[72] Xu K., Bao H., Tang C., Maliutina K., Li F., Fan L.*, Engineering hierarchical MOFs-derived Fe-N-C nanostructure with improved oxygen reduction activity for zinc-air battery: The role of iron oxide, Materials Today Energy, 18 (2020) 100500, https://doi.org/10.1016/j.mtener.2020.100500. 中科院大类二区SCI, IF: 7.311

[71] Jing Y., Lund P., Asghard M.I., Zhu B., Wang B., Zhou X., Chen C., Fan L.* Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells, Ceramics International, 46 (2020) 29290-29296, https://doi.org/10.1016/j.ceramint.2020.08.104. 中科院大类二区SCI, IF: 3.830

[70] Zhou, X., Lin, L., Lv, Y., Zhang, X., Fan, L., Wu, Q., Elucidating effects of component materials and flow fields on Sn–Fe hybrid flow battery performance, J. Power Sources 450 (2020) 227613. https://doi.org/10.1016/j.jpowsour.2019.227613.

[69] Yu, Y., Yu, L., Shao, K., Li, Y., Maliutina, K., Yuan, W., Wu, Q., Fan, L.*, BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells, Ceram. Int. 46 (2020) 11811 https://doi.org/10.1016/j.ceramint.2020.01.215. 中科院大类二区SCI, IF: 3.830

[68] Cao, Z., Wang, Z., Li, F., Maliutina, K., Wu, Q., He, C., Lv, Z.*, Fan, L.*, Insight into high electrochemical activity of reduced La0.3Sr0.7Fe0.7Ti0.3O3 electrode for high temperature CO2 electrolysis, Electrochim. Acta 332 (2020) 135464. https://doi.org/10.1016/j.electacta.2019.135464. 中科院大类二区SCI, IF: 6.215

[67] Li F., Yin Y., Zhang C., Li W., Maliutina K., Zhang Q., Wu Q., He C., Zhang Y., Yang M.*, Fan L.*, Enhancing oxygen reduction performance activity of oxide-CNT through in-situ generated nanoalloy bridging, Applied Catalysis B: Environmental. 263 (2020) 118297. https://doi.org/10.1016/j.apcatb.2019.118297. 中科院大类一区SCI,IF: 16.683

[66] Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L.*, Asefa T.*, Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction, J. Mater. Chem. A, 7 (2019) 18030 . https://doi.org/10.1039/c9ta04374h. 中科院大类一区SCI, IF: 11.301

[65] Shao K., Li F., Zhang G., Zhang Q., Maliutina K., Fan L.*, Approaching Durable Single-Layer Fuel Cells: Promotion of Electroactivity and Charge Separation via Nanoalloy Redox Exsolution, ACS Appl. Mater. Interfaces, 11 (2019) 27924. https://doi.org/10.1021/acsami.9b08448. 中科院大类一区SCI,IF: 8.758

[64] Z. Cao, L. Fan*, C. He, G. Zhang, K. Shao, Z. Lv, B. Zhu*. Titanium-substituted ferrite perovskite: An excellent sulfur and coking tolerant anode catalyst for SOFCs. Catalysis Today, 330 (2019) 217. https://doi.org/10.1016/j.cattod.2018.04.023. 中科院大类二区SCI, IF: 5.825

[63] Hu Q., Li G., Liu X., Zhu B., Li G., Fan L., Chai X., Zhang Q., Liu J., He C., Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation, J. Mater. Chem. A, 7 (2019) 461. https://doi.org/10.1039/c8ta09534e. 中科院大类一区SCI, IF: 11.301

[62] Liu, X., Hu, Q., Zhu, B., Li, G., Fan, L., Chai, X., Zhang, Q., Liu, J., He, C., Boosting Electrochemical Hydrogen Evolution of Porous Metal Phosphides Nanosheets by Coating Defective TiO2 Overlayers, Small 14 (2018) e1802755. https://doi.org/10.1002/smll.201802755.

[61] Zhu, B., Hu, Q., Liu, X., Li, G., Fan, L., Zhang, Q., Liu, J., He, C., Boosting the electrochemical water oxidation reaction of hierarchical nanoarrays through NiFe-oxides/Ag heterointerfaces, Chem. Commun. 54 (2018) 10187. https://doi.org/10.1039/C8CC06270F.

[60] Yang H., Wu Y., Lin Q., Fan L., Chai X., Zhang Q., Liu J., He C., Lin Z. Composition Tailoring via N & S Co-doping and Structure Tuning by Constructing Hierarchical Pores Enable Metal-free Catalysts for High-Performance Electrochemical Reduction of CO2, Angewandte Chemie, 130 (2018) 15702, https://doi.org/10.1002/ange.201809255. 中科院大类一区

[59] Yang H., Zhang H., Wu Y., Fan L., Chai X., Zhang Q., Liu J., He C. Core-shell structured silver nanowires/nitrogen-doped carbon catalyst for enhanced and multifunctional electro-fixation of CO2. ChemSusChem 11 (2018) 3905, https://doi.org/10.1002/cssc.201801612. 中科院大类一区

[58] Fan L.#*, Zhu B.*, Su P.-C.*, He C*. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45 (2018) 148, IF: 12.34, https://doi.org/10.1016/j.nanoen.2017.12.044. 中科院大类一区SCI

[57] G. Zhang, W. Li, W. Huang, Z. Cao, K. Shao, F. Li, C. Tang, C. He*, L. Fan*. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conductivity. J. Power Sources, 386 (2018) 56, https://doi.org/10.1016/j.jpowsour.2018.03.035. 中科院大类一区SCI

[56] Y. Liu, H.-P. Zhang, B. Zhu, H. Zhang, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*. C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 283 (2018) 221 https://doi.org/10.1016/j.electacta.2018.06.137. 中科院大类一区SCI

[55] Q. Hu, X. Liu, B. Zhu, G. Li, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*. Redox route to ultrathin metal sulfides nanosheet arrays-anchored MnO2 nanoparticles as self-supported electrocatalysts for efficient water splitting. J Power Sources 398 (2018) 159. https://doi.org/10.1016/j.jpowsour.2018.07.068.

[54] Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*, Z. Lin*. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50 (2018) 212 https://doi.org/10.1016/j.nanoen.2018.05.033.

[53] H. Yang, Q. Lin, H. Zhang, Y. Wu, L. Fan, X Chai, Q. Zhang, J. Liu, C. He* Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability. Electrochem Commun 93 (2018) 138 https://doi.org/10.1016/j.elecom.2018.06.018.

[52] C. Tang, Q. Hu, F. Li, C. He*, X. Chai, C. Zhu, J. Liu, Q. Zhang, B. Zhu, L. Fan*. Coupled molybdenum carbide and nitride on carbon nanosheets: An efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline Media. Electrochimica Acta, 2018, 280 (2018) 323, https://doi.org/10.1016/j.electacta.2018.05.129.

[51] T-H Lee, L. Fan, Yu C., F-E Wiria, P-C. Su*. High-Performance SDC-Infiltrated Nanoporous Silver Cathode with Superior Thermal Stability for Low Temperature Solid Oxide Fuel Cells. J. Mater. Chem. A, 6 (2018) 7357, https://doi.org/10.1039/c8ta01104d.

[50] C. Tang, H. Zhang, K. Xu, Q. Hu, F. Li, C. He*, Q. Zhang, J. Liu, L. Fan*. Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catalysis Today, 316 (2018) 171. https://doi.org/10.1016/j.cattod.2018.03.010.

[49] F. Li, Y. Yin, W. Li, C. He*, J. Liu, L. Fan*. Readily fabricated NiCo alloy-metal oxide-carbon black hybrid catalysts for the oxygen reduction reactions in the alkaline media. Int. J. Hydrogen Energy, 43 (2018) 12637. https://doi.org/10.1016/j.ijhydene.2018.04.096.

[48] Hu Q., Liu X., Tang C., Fan L., Chai X., Zhang Q., Liu J., He C*. High efficiency oxygen evolution reaction enabled by 3D network composed of nitrogen-doped graphitic carbon-coated metal/metal oxide heterojunctions. Electrochim Acta 265 (2018) 620 https://doi.org/10.1016/j.electacta.2018.01.209.

[47] Yang H., Lin Q., Zhang H., Li G, Fan L, Chai X, Zhang Q, Liu J., He C*. Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO2 with excellent efficiency. Chem Commun, 54 (2018) 4108, https://doi.org/10.1039/c8cc00969d.

[46] Hu Q., Liu X., Tang C., Fan L., Chai X., Zhang Q., Liu J., He C. Facile fabrication of 3D network composed of N-doped carbon-coated core-shell metal oxides/phosphides for highly efficient water splitting. Sustainable Energy & Fuels, 2 (2018) 1085, https://doi.org/10.1039/c7se00576h.

[45] T-H Lee, J-D Baek, L. Fan, F-E Wiria, P-C. Su*, S-H Lee*. SDC-Infiltrated Microporous Silver Membrane with Superior Resistance to Thermal Agglomeration for Cathode-Supported Solid Oxide Fuel Cells. Energies, 11 (2018) 2181, IF: 2.676, https://doi.org/10.3390/en11092181.

[44] Liu Y.#, Fan L.#, Cai Y., Zhang W., Wang B., Zhu B. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach. ACS Appl. Mater. Interfaces 9 (2017) 23614. https://doi.org/10.1021/acsami.7b02224.

[43] Lund P., Zhu B., Li Y., Yun S., Nasibulin A., Raza R., Leskelä M., Ni M., Wu Y., Chen G., Fan L., Kim J., Basu S., Kallio T., Pamuk I. Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters 2 (2017) 2752 https://doi.org/10.1021/acsenergylett.7b00997.

[42] Fan L., Chen M., Zhang H., Wang C., He C. Pr2NiO4-Ag composite as cathode for low temperature solid oxide fuel cells: Effects of silver loading methods and amounts. Int J Hydrogen Energy 42 (2017) 17544. https://doi.org/10.1016/j.ijhydene.2017.05.053.

[41] Mi Y., Zhang W., Deng H., Wang X., Fan L.*, Zhu B*. Rare-earth oxide-Li0.3Ni0.9Cu0.07Sr0.03O2-δ composites for advanced fuel cells. Int J Hydrogen Energy, 42 (2017) 22214. https://doi.org/10.1016/j.ijhydene.2017.03.025.

[40] Xie H., Biswas M., Fan L., Li Y., Su P.-C*. Rapid thermal processing of chemical-solution-deposited yttrium-doped barium zirconate thin films. Surface and Coatings Technology 320 (2017)213. https://doi.org/10.1016/j.surfcoat.2017.01.045.

[39] Fan L., He C., Zhu B. Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: A review. Int J Energy Res 41 (2017) 465, https://doi.org/10.1002/er.3629.

[38] Wang B., Wang Y., Fan L., Cai Y., Xia C., Liu Y., et al. Preparation and characterization of Sm and Ca co-doped ceria–La0.6Sr0.4Co0.2Fe0.8O3−δ semiconductor–ionic composites for electrolyte-layer-free fuel cells. J. Mater. Chem. A, 4 (2016) 15426, https://doi.org/10.1039/c6ta05763b.

[37] Fan L. and Su P. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2/e) conducting cathode for low temperature proton conducting solid oxide fuel cells. J Power Sources 306 (2016) 369. https://doi.org/10.1016/j.jpowsour.2015.12.015. SCI一区, IF: 6.217, ESI高引论文

[36] He C.*, Xie M., Hong F., Chai X., Mi H., Zhou X., Fan L.*, Zhang Q., Ngai T., Liu J. Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochim Acta 222 (2016) 1709, https://doi.org/10.1016/j.electacta.2016.11.162.

[35] Zhu B., Fan L.*, Deng H., He Y., Afzal M., Dong W., Yaqub A. and Janjua N. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells. J Power Sources 316 (2016) 37 http://dx.doi.org/10.1016/j.jpowsour.2016.03.056. SCI一区, IF: 6.217

[34] Zhu B#., Huang Y. #, Fan L. #, Ma Y. #, Wang B., Xia C., Afzal M., Zhang B., Dong W., Wang H. and Lund P. D. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19 (2016) 156. https://doi.org/j.nanoen.2015.11.015. SCI一区, IF:10.268

[33] He Y., Fan L., Afzal M., Singh M., Zhang W., Zhao Y., Li J., Zhu B. Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-δ as high performance cathode for low-temperature SOFCs. Electrochim. Acta 191 (2016) 223. https://doi.org/10.1016/j.electacta.2016.01.090. SCI一区, IF:4.504

[32] Fan L., Xie H., Su P. Spray Coating of Dense Proton-conducting BaCe0.7Zr0.1Y0.2O3 Electrolyte for Low Temperature Solid Oxide Fuel Cells. Int J Hydrogen Energy, 41 (2016) 6516. http://dx.doi.org/10.1016/j.ijhydene.2016.03.001. SCI二区, IF:3.268

[31] Yu C.-C., Baek J. D., Su C.-H., Fan L., Wei J., Liao Y.-C., Su P. Inkjet-printed Porous Silver Thin Film as a Cathode for Low-Temperature Solid Oxide Fuel Cell. ACS Appl Mater Interfaces 8 (2016) 10343. https://doi.org/10.1021/acsami.6b01943.

[30] Zhu B., Lund P. D., Raza R., Ma Y., Fan L., Afzal M., Patakangas J., He Y., Zhao Y., Tan W., Huang Q.-A., Zhang J., Wang H. Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials. Adv. Energy Mater., 5 (2015) 1401895. https://doi.org/10.1002/aenm.201401895. SCI一区, IF:14.385

[29] Liu K.-Y., Fan L., Yu C.-C., Su P.-C. Thermal stability and performance enhancement of nano-porous platinum cathode in solid oxide fuel cells by nanoscale ZrO2 capping. Electrochem. Commun. 56 (2015) 65. http://dx.doi.org/10.1016/j.elecom.2015.04.008. SCI一区, IF: 4.569

[28] Fan L.*, He Y., Zhu B. An electrolyte free fuel cell from a recycled conventional solid oxide fuel cell. 化学工业与工程Chinese Chemical Industry and Engineering, 31 (2014) 61 邀请论文

[27] Fan L., Ma Y., Wang X., Singh M., Zhu B*. Understanding of electrochemical mechanism of the core-shell Ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell. J. Mater. Chem. A, 2 (2014) 5399. http://dx.doi.org/10.1039/C3TA14098A. SCI一区, IF: 6.26

[26] Zhu B. Fan L., Zhao Y., Tan W., Xiong D., Wang H., Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx materials for the single-component fuel cell. RSC Advances, 4 (2014) 9920. http://dx.doi.org/10.1039/C3RA47783E. SCI, IF: 3.71

[25] Zhu B., Fan L., He Y., Zhao Y., Wang H. A commercial lithium battery LiMn-oxide for fuel cell applications. Mater. Lett., 126 (2014) 85. https://doi.org/10.1016/j.matlet.2014.04.011. SCI 二区, IF: 2.269

[24] Chen M., Zhang H., Fan L.*, Wang C. and Zhu B. Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect. Int J Hydrogen Energy 39 (2014) 12309.. https://doi.org/10.1016/j.ijhydene.2014.04.004. SCI一区, IF: 4.054

[23] Zhao Y., He Y., Fan L., He J., Xiong D.-B., Gao F. and Zhu B. Synthesis of hierarchically porous LiNiCuZn-oxide and its electrochemical performance for low-temperature fuel cells. Int J Hydrogen Energy 39 (2014) 12317. https://doi.org/10.1016/j.ijhydene.2014.03.087. SCI一区, IF: 4.054

[22] Fan L., Wang C., Chen M., Zhu B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 234(2013)154. https://doi.org/10.1016/j.jpowsour.2013.01.138. SCI一区, IF:4.951, ESI高引(1%)和热点(1‰)论文Highly cited paper.

[21] Fan L., Zhang H., Chen M., Wang C., Wang H., Singh M., Zhu B. Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. Int. J. Hydrogen Energy 38 (2013) 11398. https://doi.org/10.1016/j.ijhydene.2013.06.050. SCI一区, IF: 4.054

[20] Zhu B., Fan L., Lund P. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy 106 (2013) 163. ESI Highly cited paper. https://doi.org/10.1016/j.apenergy.2013.01.014. SCI一区, IF: 5.261

[19] Tan W., Fan L., Raza R., Ajmal Khan M., Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. Int. J. Hydrogen Energy 38 (2013) 370. https://doi.org/10.1016/j.ijhydene.2012.09.160. SCI一区, IF: 4.054

[18] Zhu B., Lund P., Raza R., Patakangas J., Huang Q., Fan L., Singh M. Nano-Redox and Nano-Device Processes for a New Energy Conversion Technology. Nano Energy 2 (2013) 1179.. https://doi.org/10.1016/j.nanoen.2013.05.001. SCI一区,IF: 10.02

[17] Zhao Y., He J., Fan L., Ran W., Zhang C., Gao D., Wang C. and Gao F. Synthesis and characterization of hierarchical porous LiNiCuZn-oxides as potential electrode materials for low temperature solid oxide fuel cells. Int J Hydrogen Energy 38 (2013) 16558. https://doi.org/10.1016/j.ijhydene.2013.05.114. SCI一区, IF: 4.054

[16] Fan L., Wang C., Zhu B. Low temperature ceramic fuel cells using all nano composite materials. Nano Energy, 1 (2012) 631. https://doi.org/10.1016/j.nanoen.2012.04.004. SCI一区, IF: 10.02

[15] Fan L., Chen M., Wang C., Zhu B. Pr2NiO4–Ag composite cathode for low temperature solid oxide fuel cells with ceria-carbonate composite electrolyte. Int. J. Hydrogen Energy 37 (2012) 19388. https://doi.org/10.1016/j.ijhydene.2011.09.124. SCI一区, IF: 4.054

[14] Fan L., Wang C., Di J., Chen M., Zheng J., Zhu B. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells. J. Nanosci. Nanotechnol. 12 (2012) 4941. https://doi.org/10.1166/jnn.2012.4948. SCI三区, IF: 1.563

[13] Fan L., Wang C., Osamudiamen O., Raza R., Singh M., Zhu B. Mixed ion and electron conductive composites for single component fuel cells: I. Effects of composition and pellet thickness. J. Power Sources 217 (2012) 164. https://doi.org/10.1016/j.jpowsour.2012.05.045. SCI一区, IF: 4.951

[12] Fan L., Zhang G., Chen M., Wang C., Di J., Zhu B. Proton and oxygen ionic conductivity of doped ceria-carbonate composite by modified Wagner polarization. Int. J. Electrochem. Sci., 7 (2012) 8420. (link) SCI二区, IF: 3.729

[11] Fan L., Zhu B., Chen M., Wang C., Raza R., Qin H., Wang X., Wang X., Ma Y. High performance transition metal oxide composite cathode for low temperature solid oxide fuel cells. J Power Sources 203 (2012) 65. https://doi.org/10.1016/j.jpowsour.2011.12.017. SCI一区, IF: 4.951

[10] Liu Q., Qin H., Raza R., Fan L., Li Y., Zhu B. Advanced electrolyte-free fuel cells based on functional nanocomposites of a single porous component: analysis, modeling and validation. RSC Advances, 2 (2012) 8036. http://dx.doi.org/10.1039/C2RA20694C. SCI三区,IF2.562

[9] Qin H., Zhu B., Raza R., Singh M., Fan L., Lund P. Integration design of membrane electrode assemblies in low temperature solid oxide fuel cell. Int. J. Hydrogen Energy 37 (2012) 19365. https://doi.org/10.1016/j.ijhydene.2011.10.065. SCI一区, IF: 4.054

[8] Raza R., Qin H., Fan L., Takeda K., Mizuhata M., Zhu B. Electrochemical study on co-doped ceria–carbonate composite electrolyte. J. Power Sources 201 (2012) 121. https://doi.org/10.1016/j.jpowsour.2011.10.124. SCI一区, IF: 4.951

[7] Zhu B., Raza R., Liu Q., Qin H., Zhu Z., Fan L., Singh M.,Lund P. A new energy conversion technology joining electrochemical and physical principles. RSC Advances, 2 (2012) 5066. https://doi.org/10.1039/C2RA01234K SCI, IF: 2.562

[6] Fan L., Wang C., Chen M., Di J., Zheng J., Zhu B. Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate composite electrolytes for solid oxide fuel cells. Int. J. Hydrogen Energy 36 (2011) 9987. https://doi.org/10.1016/j.ijhydene.2011.05.055. SCI一区, IF: 4.054

[5] Zhu B., Ma Y., Wang X., Raza R., Qin H., Fan L. A fuel cell with a single component functioning simultaneously as the electrodes and electrolyte. Electrochem. Commun., 13 (2011) 225. https://doi.org/10.1016/j.elecom.2010.12.019. SCI一区, IF: 4.859

[4] Zhu B., Qin H., Raza R., Liu Q., Fan L., Patakangas J. A single-component fuel cell reactor. Int. J. Hydrogen Energy 36 (2011) 8536. https://doi.org/10.1016/j.ijhydene.2011.04.082. SCI一区, IF: 4.054

[3] Zhu B., Raza R., Qin H., Fan L. Single-component and three-component fuel cells. J. Power Sources 196 (2011) 6362. https://doi.org/10.1016/j.jpowsour.2011.03.078. SCI一区, IF: 4.951

[2] Zhu B., Raza R., Qin H., Liu Q., Fan L. Fuel cells based on electrolyte and non-electrolyte separators. Energy Environ. Sci., 4 (2011) 2986. https://doi.org/10.1039/C1EE01202A. SCI一区, IF: 9.6

[1] Di J., Chen M., Wang C., Zheng J., Fan L., Zhu B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochem ical properties in low temperature solid oxide fuel cell. J. Power Sources 195 (2010) 4695. https://doi.org/10.1016/j.jpowsour.2010.02.066. SCI一区, IF: 4.951

 


书本编辑和出版

1.      Zhu, B., Raza, R., Fan, L., Sun, C., Solid Oxide Fuel Cells: From Electrolyte-based to Electrolyte-free Devices, John Wiley & Sons, 2020. Online ISBN: 9783527812790, Print ISBN: 9783527344116, https://doi.org/10.1002/9783527812790

2.      Fan, L.*, Chapter 2: Solid-State Electrolytes for SOFC, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020, pp. 35. https://doi.org/10.1002/9783527812790.ch2

3.      Zhu, B.*, Fan, L.*, Kim, J.-S., Lund, P.D., Chapter 6: Electrolyte-Free SOFCs: Materials, Technologies, and Working Principles, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020. https://doi.org/10.1002/9783527812790.ch6

4.      Wang, B., Fan, L.*, Liu, Y., Zhu, B.*, Chapter 7: Ceria Fluorite Electrolytes from Ionic to Mixed Electronic and Ionic Membranes, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020, pp. 213. https://doi.org/10.1002/9783527812790.ch7

5.      Wu, Y.#, Fan, L.#, Mushtaq, N., Zhu, B., Afzal, M., Sajid, M., Raza, R., Kim, J.-S., Lin, W.-F., Lund, P.D., Chapter 11: Electrolyte-Free Fuel Cell: Principles and Crosslink Research, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020. https://doi.org/10.1002/9783527812790.ch11

6.      Fan L., Afzal M. He C., Zhu B., Chapter 12 : “Nanocomposites for ‘‘Nano Green Energy’’ applications” in “Bioenergy systems for the future”, Edited by: F. Dalena, A. Basile and C. Rossi, Elsevier, 2017, 421-429, ISBN: 978-0-08-101031-0, DOI: https://doi.org/10.1016/B978-0-08-101031-0.00012-0.

专利

[1]          范梁栋,张卉,复合材料及其制备方法、电催化水解制氢的方法,中国发明专利,深圳大学,专利号:202010595727.4,申请日:2020.06.28,授权日:2023.2.17

[2]          范梁栋,俞莉翔,景义甫,一种CO2转化电解池及其制备方法与应用,中国发明专利,深圳大学,专利号:ZL202110674479.7,申请日2021.06.17,授权日:2022.2.23

[3]          范梁栋,张卉,唐超云,碳化钼材料、碳化钼@硫化钼复合材料及制备方法与应用,中国发明专利,深圳大学,专利号:ZL2018107854129,申请日2018.07.17,授权日:2021.08.03

[4]          范梁栋,徐括峰,一种含锌单原子催化剂及其制备方法与应用,中国发明专利,深圳大学,专利号:ZL 2020 1 0475821.6申请日:2020.05.29,授权日:2021.05.11

[5]          范梁栋陶瓷燃料电池及其制备方法,中国发明专利,深圳大学,授权专利号:ZL 201711078240.3,申请日:2017.11.06,授权日:2020.05.22

[6]          朱斌,宓丹,范梁栋, 何运娟,用锰酸锂与稀土氧化物复合材料制造低温固体氧化物燃料电池, 中国专利, 专利号:ZL 2013107474752

[7]          尹双凤,罗胜联,范梁栋,代威力,张晓文,一种催化氧化苯乙烯制备苯甲醛的方法,中国专利,专利号:ZL 200810031739.3 

[1]          范梁栋,胡启铖,包华源,电极材料的制备方法、电极和超级电容器,中国发明专利,深圳大学,申请号:202011091451.22021.11.09

[2]          范梁栋,林万斌,杨睿,钙钛矿阴极材料、固体氧化物电解池及其制备方法与应用,中国发明专利,深圳大学,申请号:20231064557052023.06.01


会议报告

1.       Fan L., Wang C., Di J., Chen M., Zheng J., Zhu B., Oral presentation: ceria-carbonate composite for LTCFCs. NANOSMAT-5, 19-21 Oct., 2010, Reims, France.

2.      Fan L., Chen M., Wang C., Zhu B., Oral presentation: Pr2NiO4 based composite cathode for LTSOFC, International Workshop on Molten Carbonates & Related Topics 21-22nd March, 2011, Chimie-ParisTech, Paris, France.

3.      Fan L., Zhu B., Oral Presentation: State of the art - Ceria-carbonate composites (3C) for advanced LT ceramic fuel cells (CFCs), ECerS XII 12th conference of the European ceramic society, Jun.19-23rd, 2011, Stockholm, Sweden.

4.      Fan L., Chen M., Wang C., Zhu B, Presentation: Synthesis and characterization all nano-composite materials for LTCFCs, European Fuel Cell Technology & Applications Piero Lunghi Conference & Exhibition, Dec. 14-16th, 2011, Rome, Italy.

5.      Fan L., Raza R., Zhu B., Post presentation: Optimized single component fuel cells, Grove Fuel Cells Conference 2012, 10-11st, April 2012, Berlin, Germany.

6.      Fan L., Zhu B, Oral presentation: Single Component Low-temperature Fuel Cell Operated with Bio-alcohol Fuels, World Resources Forum 2012, 21-23, Oct. 2012, Beijing, China. (Session chairman/分会场主持人)

7.      Fan L., Singh M, Zhu B, Oral presentation: Nanotechnology and multi-functional nanocomposites for Electrolyte-free fuel cells (EFFCs), International Conference on Energy and Environment-Related Nanotechnology, 21-24, Oct., 2012, Beijing, China.

8.      Fan L., Zhu B, 邀请报告: Ceria-based nanocomposite for high performance fuel cell and other advanced applications, International Conference on Surfaces, Coatings and Nanostructured Materials (NANOSMAT-Asia), 13-15th, March, 2013, Wuhan, China

9.      Fan L., Zhu B, Oral presentation: Advanced ceria-carbonate composites and breakthrough technologies, International Workshop on Molten Carbonates & Related Topics, 26-27th, Sept. 2013, GyeongJu, Korea

10.  Fan L., Afzal M., Zhu B., Oral presentation: Electrochemical study of ceria-carbonate for effective hydrogen production, European fuel cell 2013, 11-12, Dec. 2013, Rome, Italy

11.  Fan L., Su P-C, Oral Presentation, A New Ternary Protonic/Oxygen Ionic/Electronic Conducting Cathode for Proton Conducting Solid Oxide Fuel Cell, 20th International Conference on Solid State Ionics, 14-19, Jun., 2015, Keystone Resort & Conference Center in Keystone, Colorado, USA.

12.  Fan L., Su P, Oral presentation: Spray Coating of Dense Proton-conducting BZCY Electrolyte Thin Film for LTSOFCs, The 8th International Conference on Technological Advances of Thin Films & Surface Coatings (ThinFilms 2016), 12-15th, July, 2016, Singapore (Session Chair).

13.  Fan L., Post Presentation, Electro-catalytic activity of lithiated transition metal oxide catalysts for low temperature solid oxide fuel cells, 2nd International Symposium on Catalytic Science and Technology in Sustainable Energy Environment, Oct 11-14, 2016, Tianjin, China.

14.  Fan L. Zhang G. Oral presentation: Sm0.2Ce0.8O2-Na2CO3 nanocomposite: one step synthesis and electrochemical performances for low temperature ceramic fuel cells, NANOENERGY 2017 (4th International Conference on Nanotechnology, Nanomaterials & Thin Films for Energy Applications), 26-28 July 2017, Aalto University, Helsinki, Finland.

15.  Fan L.*, G. Zhang, Z. Cao, K. Shao, Oral Presentation: Recycling of symmetrical solid oxide fuel cell for single component fuel cell application, China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan

16.  G. Zhang, Z. Cao, K. Shao, L. Fan*, Post Presentation: Strongly coupled SDC-Na2CO3 nanocomposite: One step synthesis and super proton conductivity. China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan

17.  Z. Cao, K. Shao, G. Zhang, L. Fan*, Post Presentation: Faraday efficiency study of the Fe based perovskite oxide for CO2 electrolysis, China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan.

18.  Fan L., Zhang G., High ionic conducting composite membrane for low temperature solid oxide fuel cells, The 9th International Conference on Technological Advances of Thin Films & Surface Coatings (Thim film 2018), 17 – 20 July 2018, Shenzhen, China, Oral presentation

19.  李凤姣、印钰、范梁栋,邀请报告:与贵金属催化活性媲美的钙钛矿氧化物-金属-碳纳米管双功能氧电催化剂的理性设计、合成与表征,中国新能源材料与器件第二届学术会议, 2018.10.19-21,湖南长沙,(证书)

20.  Fan L. Design of active and durable oxide-metal-NCNT oxygen electrocatalysts for Zinc-Air battery, 2019 International Conference on Electrochemical Energy System (2019 ICEES,电化学系统大会)2019326-29日,中国绍兴,口头报告

21.  Fan L., 邀请报告Functional materials for non-classic ceramic fuel cells, International Conference on Solid state ionics, Pyengchang, Jun. 15-22nd, 2019,分会场主持人

22.  范梁栋, 张广洪,低温固态氧化物燃料电池纳米复合电解:一步合成与界面超质子电导性能研究,Solid state ionics 2018August 5-9st, 2018, 上海同济大学

23.  Fan L, Shao K., 大会邀请报告Boosting performance and durability of single-layer fuel cell with nanoalloy exsolved perovskite oxide semiconductors, Nanosmat Asia 2019, Oct. 11-13rd2019,中国西安

24.  范梁栋钼基析氢催化剂的设计合成和电化学性能研究第二十次全国电化学大会,20191025-28日,中国长沙,口头报告

25.  范梁栋邀请专题报告Boosting performance and durability of single-layer fuel cell with nanoalloy exsolved perovskite oxide semiconductors2019宁波新能源技术国际研讨会International Symposium on New Energy Technology2019111-3,中国宁波

26.  范梁栋,景义甫,俞莉翔,分会邀请报告:氧化铈-碳酸盐复合物:多离子导电特性与功能应用,2020全国固态离子学会议(SSIC2020暨新型能量储存与转换材料及技术国际论坛,20200925-29日,中国贵阳,分会场主持人

27.  范梁栋,大会邀请报告:钙钛矿表面纳米金属偏析有效提升电化学能量转换 Effective electrochemical energy conversion using perovskite oxides with nano metal exsolution,第六届长三角国际新能源会议,The 6thYangzi River Delta International Conference on New Energy2020.12.05-07,中国南京

28.  范梁栋,氧化铈-碳酸盐复合陶瓷的合成和CO2 电解性能研究,先进陶瓷高峰论坛,2021.04.23-25,中国长沙

29.  范梁栋,大会报告:固体氧化物CO2 电解池新型钙钛矿氧化物基阴极材料研究,2021第四届全国氧化物材料、器件及发展趋势研讨会,2021.04.16-18,深圳,中国高新材料工业技术科技交流中心

30.  范梁栋,高温CO2陶瓷电解池:异质材料设计与电化学性能研究,2021SOFC青年研讨会,2021.05.14-17,中国济南大学

31.  Liangdong Fan, Active heterostructure materials for High temperature CO2 ceramic electrolyzer: Structural design and electrochemical performance, Cell Symposium - Advancing Catalysis for C1 Chemistry 碳一分子催化化学国际学术研讨会, July 23-25, 2021,细胞出版社,中国科学院大连化学物理研究所

32.  范梁栋分会邀请报告:基于混合离子导电电解质的CO2高温陶瓷电解池研究,第六届全国固态离子学青年术交流会暨2021年中国硅酸盐学会固态离子分理理事会,2021.09.27-29 湖南韶山市

33.  Liangdong Fan, Zenghui Wang, High-performance in-situ Ni nanoparticle exsolved LSTN/LNSDC composites for low temperature solid oxide fuel cells, 7th International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications toward a Low Carbon Society (ACTSEA2021), Virtual conference National Taipei University of Technology, Taipei, TaiwanNOV. 15-17, 2021. 线上

34.  范梁栋,钙钛矿氧化物表面功能化及其电化学应用研究,Surface engineering of perovskite oxide for advanced electrochemical applications,第七届长三角国际新能源会议暨第三届新型燃料电池国际研讨会/The 7th Yangzi River Delta International Conference on New Energy/The 3rd International Forum on new fuel cells2021.11.19-21,线上

35.  范梁栋,特邀报告: Design and electrochemical performance investigation of active CO2 cathodic catalyst for solid oxide electrolysis cells第三届国际电化学能源系统大会,2022.07.27-07.30,银川,宁夏

36.  范梁栋,口头报告:碱金属掺杂提升钙钛矿氧化物阴极电解CO2 性能研究Boosting Performance of CO2 Electrolysis on Perovskite Oxide Cathode by Alkali Metal Doping,第八届长三角新能源国际会议暨第四届新型燃料电池国际会议The 8th Yangzi River Delta International Conference on New Energy The 4th International Forum on New Fuel Cells2022.12.18 江苏南京线上

37.  范梁栋口头报告:复合离子导电高温CO2电解池研究,第21届全国固态离子学会议,2023.03.30-04.03,江苏南京

38.   范梁栋,分会邀请报告:固体氧化物电解池含碱金属钙钛矿阴极的原位重构和电解CO2性能研究,中国材料大会,中国深圳,2023.07.07-10 

39.     范梁栋,邀请报告/分会主持人:金属支撑半导体离子燃料电池及其质子导电行为研究,第二届中国质子导电陶瓷与氢能技术学术会议,江苏盐城,2023.09.08-10

40.  范梁栋邀请报告:金属支撑半导体基燃料电池的构筑及其质子导电特性研究,第四届国际电化学能源系统学术会议,中国南昌,2023.10.21-25