Links: https://pubs.acs.org/doi/10.1021/acs.nanolett.3c03970
Multiferroic materials provide robust and efficient routes for the control of magnetism by electric fields, which has been diligently sought after for a long time. The two-dimensional (2D) vdW multiferroics is a more exciting endeavour. To date, the nonvolatile manipulation of magnetism through ferroelectric polarization still remains challenging in a 2D vdW heterostructure multiferroic. Here, we report a van der Waals (vdW) heterostructure multiferroic comprising atomically thin layered antiferromagnet (AFM) CrI3 and ferroelectric (FE) α-In2Se3. We demonstrate anomalously nonreciprocal and nonvolatile electric-field control of magnetization by the ferroelectric polarization. The nonreciprocal electric control originates from an intriguing antisymmetric enhancement of interlayer ferromagnetic coupling in the opposite ferroelectric polarization configurations of α-In2Se3. Our work provides numerous possibilities for creating diverse heterostructure multiferroics at the limit of few atomic layers for multi-stage magnetic memories and brain inspired in-memory computing.