当前位置: X-MOL首页 › SCI期刊查询及投稿分析系统 › International Journal of Numerical Methods for Heat & Fluid Flow杂志
International Journal of Numerical Methods for Heat & Fluid Flow
基本信息
期刊名称 | International Journal of Numerical Methods for Heat & Fluid Flow INT J NUMER METHOD H |
---|---|
期刊ISSN | 0961-5539 |
期刊官方网站 | https://www.emerald.com/insight/publication/issn/0961-5539 |
是否OA | No |
出版商 | Emerald Group Publishing Ltd. |
出版周期 | Bimonthly |
文章处理费 | 登录后查看 |
始发年份 | |
年文章数 | 156 |
影响因子 | 4.0(2023) scijournal影响因子 greensci影响因子 |
中科院SCI期刊分区
大类学科 | 小类学科 | Top | 综述 |
---|---|---|---|
工程技术3区 | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用3区 | 否 | 否 |
MECHANICS 力学3区 | |||
THERMODYNAMICS 热力学3区 |
CiteScore
CiteScore排名 | CiteScore | SJR | SNIP | ||
---|---|---|---|---|---|
学科 | 排名 | 百分位 | 9.5 | 0.643 | 1.016 |
Engineering Computational Mechanics |
5/89 | 94% |
|||
Engineering Aerospace Engineering |
9/153 | 94% |
|||
Engineering Engineering (miscellaneous) |
16/204 | 92% |
|||
Engineering Mechanical Engineering |
55/672 | 91% |
补充信息
自引率 | 15% |
---|---|
H-index | 43 |
SCI收录状况 | Science Citation Index Expanded |
官方审稿时间 | 登录后查看 |
网友分享审稿时间 | 数据统计中,敬请期待。 |
接受率 | 登录后查看 |
PubMed Central (PMC) | http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0961-5539%5BISSN%5D |
投稿指南
期刊投稿网址 | http://www.emeraldgrouppublishing.com/products/journals/author_guidelines.htm?id=hff#1 |
---|---|
收稿范围 | The International Journal of Numerical Methods for Heat & Fluid Flow (HFF) publishes peer-reviewed papers that explain how fundamental insights are gained in heat and fluid flow physics using computational methods supported by analytical and experimental research. The Editors encourage contributions which increase the basic understanding of the interaction between heat transfer processes and fluid dynamics involved in solving engineering problems. Original and high-quality contributions in numerical methods, including deep learning methods, for solving fluid-structure interaction, micro-bio fluidics, laminar and turbulent flow, heat transfer and advection/diffusion problems are relevant and welcome. However, the application of existing numerical, and deep learning, methods to engineering problems that are not deemed to be at the forefront of research by the Editors will not be considered for review. Topics include, but not limited to, new numerical, and deep learning, methods for solving heat and fluid flow problems in: Efficient energy transfer and storage processes Environment and Climate Change Cryogenics and Cryo-preservation Mechanical, Aerospace and Interdisciplinary Engineering |
收录体裁 | |
投稿指南 | |
投稿模板 | |
参考文献格式 | |
编辑信息 |
我要分享 (欢迎您来完善期刊的资料,分享您的实际投稿经验)