当前位置: X-MOL首页SCI期刊查询及投稿分析系统 › International Journal of Numerical Methods for Heat & Fluid Flow杂志
International Journal of Numerical Methods for Heat & Fluid Flow
基本信息
期刊名称 International Journal of Numerical Methods for Heat & Fluid Flow
INT J NUMER METHOD H
期刊ISSN 0961-5539
期刊官方网站 https://www.emerald.com/insight/publication/issn/0961-5539
是否OA No
出版商 Emerald Group Publishing Ltd.
出版周期 Bimonthly
文章处理费 登录后查看
始发年份
年文章数 156
影响因子 4.0(2023)  scijournal影响因子  greensci影响因子
中科院SCI期刊分区
大类学科 小类学科 Top 综述
工程技术3区 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用3区
MECHANICS 力学3区
THERMODYNAMICS 热力学3区
CiteScore
CiteScore排名 CiteScore SJR SNIP
学科 排名 百分位 9.5 0.643 1.016
Engineering
Computational Mechanics
5/89 94%
Engineering
Aerospace Engineering
9/153 94%
Engineering
Engineering (miscellaneous)
16/204 92%
Engineering
Mechanical Engineering
55/672 91%
补充信息
自引率 15%
H-index 43
SCI收录状况 Science Citation Index Expanded
官方审稿时间 登录后查看
网友分享审稿时间 数据统计中,敬请期待。
接受率 登录后查看
PubMed Central (PMC) http://www.ncbi.nlm.nih.gov/nlmcatalog?term=0961-5539%5BISSN%5D
投稿指南
期刊投稿网址 http://www.emeraldgrouppublishing.com/products/journals/author_guidelines.htm?id=hff#1
收稿范围
The International Journal of Numerical Methods for Heat & Fluid Flow (HFF) publishes peer-reviewed papers that explain how fundamental insights are gained in heat and fluid flow physics using computational methods supported by analytical and experimental research. 
The Editors encourage contributions which increase the basic understanding of the interaction between heat transfer processes and fluid dynamics involved in solving engineering problems. Original and high-quality contributions in numerical methods, including deep learning methods, for solving fluid-structure interaction, micro-bio fluidics, laminar and turbulent flow, heat transfer and advection/diffusion problems are relevant and welcome. However, the application of existing numerical, and deep learning, methods to engineering problems that are not deemed to be at the forefront of research by the Editors will not be considered for review.
Topics include, but not limited to, new numerical, and deep learning, methods for solving heat and fluid flow problems in:

Efficient energy transfer and storage processes
Environment and Climate Change
Cryogenics and Cryo-preservation
Mechanical, Aerospace and Interdisciplinary Engineering
收录体裁
投稿指南
投稿模板
参考文献格式
编辑信息

                                
我要分享  (欢迎您来完善期刊的资料,分享您的实际投稿经验)
研究领域:
投稿录用情况: 审稿时间:  个月返回审稿结果
本次投稿点评:
提交
down
wechat
bug