当前位置: X-MOL首页SCI期刊查询及投稿分析系统 › Computational Geosciences杂志
Computational Geosciences
基本信息
期刊名称 Computational Geosciences
COMPUTAT GEOSCI
期刊ISSN 1420-0597
期刊官方网站 https://www.springer.com/10596
是否OA No
出版商 Springer Netherlands
出版周期 Quarterly
文章处理费 登录后查看
始发年份 1997
年文章数 75
影响因子 2.1(2023)  scijournal影响因子  greensci影响因子
中科院SCI期刊分区
大类学科 小类学科 Top 综述
地学3区 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 计算机:跨学科应用3区
GEOSCIENCES, MULTIDISCIPLINARY 地球科学综合3区
CiteScore
CiteScore排名 CiteScore SJR SNIP
学科 排名 百分位 6.1 0.663 0.842
Mathematics
Computational Mathematics
25/189 87%
Computer Science
Computational Theory and Mathematics
30/176 83%
Earth and Planetary Sciences
Computers in Earth Sciences
18/73 76%
Computer Science
Computer Science Applications
241/817 70%
补充信息
自引率 9.5%
H-index 55
SCI收录状况 Science Citation Index Expanded
官方审稿时间 登录后查看
网友分享审稿时间 数据统计中,敬请期待。
接受率 登录后查看
PubMed Central (PMC) http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1420-0597%5BISSN%5D
投稿指南
期刊投稿网址 https://www.editorialmanager.com/comg/
收稿范围
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.

Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.

The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.
收录体裁
投稿指南 https://link.springer.com/journal/10596/submission-guidelines
投稿模板
参考文献格式
编辑信息

Editors-in-Chief:

Clint N. Dawson
University of Texas at Austin, TX, USA

Mary F. Wheeler
University of Texas at Austin, TX, USA

Ivan Yotov,
University of Pittsburgh, PA, USA

Founding Managing Editor:

J.-C. van Duijn

Associate Editors:

M.T. Balhoff, The University of Texas at Austin, TX, USA
Pore scale modeling; multiscale modeling
J. Caers, Stanford University, CA, USA
Data science, uncertainty quantification
A.H. Elsheikh, Heriot-Watt University, Edinburgh, UK
Inverse modeling
E. GildinTexas A & M University, College Station, TX, USA
Data assimilation; reduced order methods
I. Hoteit, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Data assimilation and parameter estimation
M. Iskandarani, University of Miami, FL, USA 
Numerical methods for ocean hydrodynamics
J. Ita, Shell Global Solutions US Inc., Katy, TX, USA
Geomechanics and multi-scale modeling 
B. Jafarpour, University of Southern California, Los Angeles, CA, USA
Stochastic Descriptions, Inverse Modeling, Optimization for Subsurface Flow, Transport Systems
H. Klie, DeepCast.ai, Houston, TX, USA
Data sciences for solving subsurface problems
P. Knabner, Universität Erlangen, Germany 
Modeling, analysis, numerical approximation of reactive transport process in porous media 
M.A. Murad, LNCC-CMC, Rio de Janeiro, Brazil 
Geomechanics
I.S. Pop, Hasselt University, Belgium
Analysis and modeling of flow through porous media
A.C. Reynolds, University of Tulsa, OK, USA
Data assimilation, reservoir optimisation, uncertainty quantification
S. SunKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Numerical methods for flow and transport
D.M. Tartakovsky, Stanford University, CA, USA
Uncertainty quantification, multiscale modeling, data-driven simulation
A. Tompson, Lawrence Livermore National Laboratory, CA, USA 
Hydrologic flow
T. van Leeuwen, Utrecht University, The Netherlands
Computational methods for inverse problems in seismology 
D. Zhang, Peking University, Beijing, P.R. China 
Stochastic uncertainty modeling

Editorial Board:

V. Cvetkovic, Royal Institute of Technology, Stockholm, Sweden 
Stochastic approach to flow 
M. Delshad, University of Texas, TX, USA
Reservoir Engineering
L. DurlofskyStanford University, CA, USA
Reservoir simulation, upscaling, production optimization, reduced-order modeling, fractured-reservoir modeling
R. Helmig, University of Stuttgart, Germany 
Environmental fluid mechanics
J.D. Jansen, DelftUniversity of Technology, The Netherlands 
Reservoir simulation, optimization, data assimilation, smart fields 
T. MannsethNORCE Norwegian Research Centre, Bergen, Norway
Inverse problems, data assimilation
W.A. Mulder, Shell Global Solutions International, Rijswijk, The Netherlands 


我要分享  (欢迎您来完善期刊的资料,分享您的实际投稿经验)
研究领域:
投稿录用情况: 审稿时间:  个月返回审稿结果
本次投稿点评:
提交
down
wechat
bug