当前位置: X-MOL首页SCI期刊查询及投稿分析系统 › ACM Transactions on Knowledge Discovery from Data杂志
ACM Transactions on Knowledge Discovery from Data
基本信息
期刊名称 ACM Transactions on Knowledge Discovery from Data
ACM T KNOWL DISCOV D
期刊ISSN 1556-4681
期刊官方网站 http://tkdd.acm.org/index.html
是否OA No
出版商 Association for Computing Machinery (ACM)
出版周期
文章处理费 登录后查看
始发年份 2006
年文章数 120
影响因子 4.0(2023)  scijournal影响因子  greensci影响因子
中科院SCI期刊分区
大类学科 小类学科 Top 综述
工程技术3区 COMPUTER SCIENCE, INFORMATION SYSTEMS 计算机:信息系统3区
COMPUTER SCIENCE, SOFTWARE ENGINEERING 计算机:软件工程3区
CiteScore
CiteScore排名 CiteScore SJR SNIP
学科 排名 百分位 6.7 1.303 1.733
Computer Science
General Computer Science
43/232 81%
补充信息
自引率 7.5%
H-index 44
SCI收录状况 Science Citation Index Expanded
官方审稿时间 登录后查看
网友分享审稿时间 数据统计中,敬请期待。
接受率 登录后查看
PubMed Central (PMC) http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1556-4681%5BISSN%5D
投稿指南
期刊投稿网址 http://mc.manuscriptcentral.com/tkdd
收稿范围
ACM Transactions on Knowledge Discovery from Data (TKDD) welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. This journal is published nine times a year.
收录体裁
投稿指南
投稿模板
参考文献格式
编辑信息

                                
我要分享  (欢迎您来完善期刊的资料,分享您的实际投稿经验)
研究领域:
投稿录用情况: 审稿时间:  个月返回审稿结果
本次投稿点评:
提交
down
wechat
bug