Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantum Confinement and End-Sealing Effects for Highly Sensitive and Stable Nitrogen Dioxide Detection: Homogeneous Integration of Ti3C2Tx-Based Flexible Gas Sensors
ACS Sensors ( IF 8.2 ) Pub Date : 2024-09-02 , DOI: 10.1021/acssensors.4c00576 Wenjing Quan 1, 2 , Jia Shi 1, 2 , Min Zeng 1 , Bin Li 3 , Zhou Liu 1, 2 , Wen Lv 1, 2 , Chao Fan 1, 2 , Jian Wu 1, 2 , Xue Liu 1, 2 , Jianhua Yang 1, 2 , Nantao Hu 1, 2 , Zhi Yang 1
ACS Sensors ( IF 8.2 ) Pub Date : 2024-09-02 , DOI: 10.1021/acssensors.4c00576 Wenjing Quan 1, 2 , Jia Shi 1, 2 , Min Zeng 1 , Bin Li 3 , Zhou Liu 1, 2 , Wen Lv 1, 2 , Chao Fan 1, 2 , Jian Wu 1, 2 , Xue Liu 1, 2 , Jianhua Yang 1, 2 , Nantao Hu 1, 2 , Zhi Yang 1
Affiliation
The real-time and room-temperature detection of nitrogen dioxide (NO2) holds significant importance for environmental monitoring. However, the performance of NO2 sensors has been hampered by the trade-off between the high sensitivity and stability of conventional sensitive materials. Here, we present a novel fully flexible paper-based gas sensing structure by combining a homogeneous screen-printed titanium carbide (Ti3C2Tx) MXene-based nonmetallic electrode with a MoS2 quantum dots/Ti3C2Tx (MoS2 QDs/Ti3C2Tx) gas-sensing film. These precisely designed gas sensors demonstrate an improved response value (16.3% at 5 ppm) and a low theoretical detection limit of 12.1 ppb toward NO2, which exhibit a remarkable 3.5-fold increase in sensitivity compared to conventional Au interdigital electrodes. The outstanding performance can be attributed to the integration of the quantum confinement effect of MoS2 QDs and the conductivity of Ti3C2Tx, establishing the main active adsorption sites and enhanced charge transport pathways. Furthermore, an end-sealing effect strategy was applied to decorate the defect sites with naturally oxygen-rich tannic acid and conductive polymer, and the formed hydrogen bonding network at the interface effectively mitigated the oxidative degradation of the Ti3C2Tx-based gas sensors. The exceptional stability has been achieved with only a 1.8% decrease in response over 4 weeks. This work highlights the innovative design of high-performance gas sensing materials and homogeneous gas sensor techniques.
中文翻译:
用于高灵敏度和稳定二氧化氮检测的量子限制和端部密封效应:基于 Ti3C2TX 的柔性气体传感器的均质集成
二氧化氮(NO 2 )的实时室温检测对于环境监测具有重要意义。然而,传统敏感材料的高灵敏度和稳定性之间的权衡阻碍了NO 2传感器的性能。在这里,我们提出了一种新颖的完全柔性纸基气体传感结构,将均质丝网印刷碳化钛(Ti 3 C 2 T x )MXene基非金属电极与MoS 2量子点/Ti 3 C 2 T x ( MoS 2 QDs/Ti 3 C 2 T x )气敏薄膜。这些精确设计的气体传感器对 NO 2表现出改进的响应值(5 ppm 时为 16.3%)和 12.1 ppb 的低理论检测限,与传统的金叉指电极相比,其灵敏度显着提高了 3.5 倍。优异的性能可归因于MoS 2 QD的量子限制效应和Ti 3 C 2 T x的电导率的集成,建立了主要的活性吸附位点并增强了电荷传输路径。此外,采用端部封闭效应策略用天然富氧单宁酸和导电聚合物修饰缺陷位点,在界面处形成的氢键网络有效减轻了Ti 3 C 2 T x基材料的氧化降解。气体传感器。只需 1 即可实现卓越的稳定性。4 周内响应率下降 8%。这项工作突出了高性能气敏材料和均质气体传感器技术的创新设计。
更新日期:2024-09-02
中文翻译:
用于高灵敏度和稳定二氧化氮检测的量子限制和端部密封效应:基于 Ti3C2TX 的柔性气体传感器的均质集成
二氧化氮(NO 2 )的实时室温检测对于环境监测具有重要意义。然而,传统敏感材料的高灵敏度和稳定性之间的权衡阻碍了NO 2传感器的性能。在这里,我们提出了一种新颖的完全柔性纸基气体传感结构,将均质丝网印刷碳化钛(Ti 3 C 2 T x )MXene基非金属电极与MoS 2量子点/Ti 3 C 2 T x ( MoS 2 QDs/Ti 3 C 2 T x )气敏薄膜。这些精确设计的气体传感器对 NO 2表现出改进的响应值(5 ppm 时为 16.3%)和 12.1 ppb 的低理论检测限,与传统的金叉指电极相比,其灵敏度显着提高了 3.5 倍。优异的性能可归因于MoS 2 QD的量子限制效应和Ti 3 C 2 T x的电导率的集成,建立了主要的活性吸附位点并增强了电荷传输路径。此外,采用端部封闭效应策略用天然富氧单宁酸和导电聚合物修饰缺陷位点,在界面处形成的氢键网络有效减轻了Ti 3 C 2 T x基材料的氧化降解。气体传感器。只需 1 即可实现卓越的稳定性。4 周内响应率下降 8%。这项工作突出了高性能气敏材料和均质气体传感器技术的创新设计。