Separation and Purification Technology ( IF 8.1 ) Pub Date : 2023-12-23 , DOI: 10.1016/j.seppur.2023.126150 Wei Li , Quanqi Zhu , Xu Yin , Zhifeng Gao , Kajia Wei , Siqi Liu , Xiaoyuan Zhang , Haoming Chen , Yonghao Zhang , Weiqing Han
Recently, pyrite (FeS2) has been discovered as a promising heterogeneous Fenton catalyst due to the excellent generation of Fe(II). However, the limited inherent catalytic efficiency and poor stability hinder its wide application in wastewater treatment. Herein, a novel carbon nanotube-loaded Mn-doped FeS2 (Mn-FeS2/MWCNT) catalyst was synthesized for high radical production and durable Fenton catalysis. The optimized Mn-FeS2/MWCNT exhibited 100 % of bisphenol A elimination within 15 min, which was ∼174- and ∼20-fold than that of FeS2 and FeS2/MWCNT, respectively, and Mn-FeS2/MWCNT demonstrated remarkable stability after five cycles (less than 0.8 mg/L Fe leaching in each cycle). The generation of hydroxyl radicals (OH) and superoxide radicals (O2−) was enhanced with Mn doping and the introduction of MWCNTs. Mechanistic studies and DFT calculations revealed that Mn doping tuned the electron density between Fe and Mn in the Fe–S–Mn linkage, further improving the H2O2 absorption energy on the Mn-FeS2 surface for radical generation. Introducing MWCNTs improved the reactivity and stability of the catalyst by electron transfer of the Fe–S–C bond. This work determined the co-enhancement effect of metal sulfur links and sulfur carbon bonds on pyrite-based materials and provides a promising catalyst for wastewater remediation.
中文翻译:
碳纳米管负载锰掺杂 FeS2 催化剂增强多相芬顿催化污染物降解:Fe-S-Mn 和 Fe-SC 连接的协同增强效应
最近,由于优异的 Fe(II) 生成能力,黄铁矿 (FeS 2 ) 被发现是一种有前途的非均相芬顿催化剂。然而,有限的固有催化效率和较差的稳定性阻碍了其在废水处理中的广泛应用。在此,合成了一种新型碳纳米管负载Mn掺杂FeS 2 (Mn-FeS 2 /MWCNT)催化剂,用于高自由基产生和持久的芬顿催化。优化后的 Mn-FeS 2 /MWCNT 在 15 分钟内实现了 100% 的双酚 A 消除,分别是 FeS 2和 FeS 2 /MWCNT的约 174 倍和约 20 倍,并且 Mn-FeS 2 /MWCNT 证明了五个循环后具有显着的稳定性(每个循环中铁浸出量低于 0.8 mg/L)。Mn掺杂和MWCNT的引入增强了羟基自由基( OH)和超氧自由基(O 2 - )的产生。机理研究和DFT计算表明,Mn掺杂调节了Fe-S-Mn键中Fe和Mn之间的电子密度,进一步提高了Mn-FeS 2表面上自由基生成的H 2 O 2吸收能。引入多壁碳纳米管通过 Fe-S-C 键的电子转移提高了催化剂的反应活性和稳定性。这项工作确定了金属硫键和硫碳键对黄铁矿基材料的协同增强作用,并为废水修复提供了一种有前途的催化剂。