当前位置:
X-MOL 学术
›
J. Mater. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Compositional engineering of ZnBr2-doped CsPbBr3 perovskite nanocrystals: insights into structure transformation, optical performance, and charge-carrier dynamics
Journal of Materials Chemistry C ( IF 5.7 ) Pub Date : 2023-09-26 , DOI: 10.1039/d3tc02179c Naresh Varnakavi 1 , Kiran Gupta 2 , Kyunghoon Lee 3 , Jiwoong Yang 3 , Pil-Ryung Cha 1 , Nohyun Lee 1
Journal of Materials Chemistry C ( IF 5.7 ) Pub Date : 2023-09-26 , DOI: 10.1039/d3tc02179c Naresh Varnakavi 1 , Kiran Gupta 2 , Kyunghoon Lee 3 , Jiwoong Yang 3 , Pil-Ryung Cha 1 , Nohyun Lee 1
Affiliation
Compositional engineering of CsPbBr3 perovskite nanocrystals (PNCs) via Zn(II)-doping is an effective way to passivate the defect states, improve the stability, and photoluminescence (PL) efficiency of PNCs for optoelectronic applications. The increase in doping of ZnBr2 results in a gradual transformation of CsPbBr3 into Cs4PbBr6 through the formation of intermediate CsPbBr3–Cs4PbBr6 heterostructures. The structural transformation is due to the replacement of Pb2+ ions at the B-site with Zn2+ ions supplied by ZnBr2. Furthermore, the presence of additional Br− ions not only facilitates the transition process but also inhibits surface defects in PNCs, leading to an impressive PL quantum yield of 98.6%. The mechanism behind this transformation and the enhancement of optical properties was investigated through experimental characterization techniques. Time-resolved PL and transient absorption spectroscopy revealed the suppression of nonradiative carrier trapping centers and the generation of shallow energy states, facilitating radiative recombination with the addition of ZnBr2. Furthermore, temperature-dependent PL and TRPL studies revealed that radiative recombination and de-trapping were facilitated by temperature changes. At elevated temperatures, ZnBr2-doped PNCs exhibited better color stability than CsPbBr3, making them suitable for application in light-emitting devices. Finally, we developed a white light emitting diode (WLED) using a blue LED, Zn-doped CsPbBr3 PNCs, and K2SiF6:Mn4+, which resulted in the emission of white light with impressive features: a high luminous efficiency of 58 lm W−1, a color rendering index of 80.6, and generated color coordinates of (0.3312, 0.3253) with a correlated temperature of 5584 K, Furthermore, the WLED achieved a wide color gamut, exhibiting 129.74% of the NTSC and 96.88% of the BT-2020.
中文翻译:
ZnBr2 掺杂 CsPbBr3 钙钛矿纳米晶体的组成工程:深入了解结构转变、光学性能和载流子动力学
通过Zn( II )掺杂对CsPbBr 3钙钛矿纳米晶(PNC)进行复合工程是钝化缺陷态、提高光电应用PNC的稳定性和光致发光(PL)效率的有效方法。ZnBr 2掺杂量的增加导致CsPbBr 3通过中间CsPbBr 3 –Cs 4 PbBr 6异质结构的形成逐渐转变为Cs 4 PbBr 6。结构转变是由于B 位点上的Pb 2+离子被 ZnBr 2提供的Zn 2+离子取代所致。此外,额外的 Br -离子的存在不仅促进了转变过程,而且抑制了 PNC 中的表面缺陷,导致 PL 量子产率高达 98.6%。通过实验表征技术研究了这种转变和光学性能增强背后的机制。时间分辨PL和瞬态吸收光谱揭示了非辐射载流子捕获中心的抑制和浅能态的产生,通过添加ZnBr 2促进辐射复合。此外,温度依赖性 PL 和 TRPL 研究表明,温度变化促进了辐射复合和去捕获。在高温下,ZnBr 2掺杂的PNCs表现出比CsPbBr 3更好的颜色稳定性,使其适合在发光器件中应用。最后,我们使用蓝色 LED、掺杂 Zn 的 CsPbBr 3 PNC 和 K 2 SiF 6 :Mn 4+开发了一种白光发光二极管 (WLED),它发出的白光具有令人印象深刻的特点:高发光效率WLED的亮度为58 lm W -1,显色指数为80.6,生成的色坐标为(0.3312, 0.3253),相关温度为5584 K。此外,WLED实现了宽色域,表现出NTSC的129.74%和96.88 BT-2020 的%。
更新日期:2023-09-26
中文翻译:
ZnBr2 掺杂 CsPbBr3 钙钛矿纳米晶体的组成工程:深入了解结构转变、光学性能和载流子动力学
通过Zn( II )掺杂对CsPbBr 3钙钛矿纳米晶(PNC)进行复合工程是钝化缺陷态、提高光电应用PNC的稳定性和光致发光(PL)效率的有效方法。ZnBr 2掺杂量的增加导致CsPbBr 3通过中间CsPbBr 3 –Cs 4 PbBr 6异质结构的形成逐渐转变为Cs 4 PbBr 6。结构转变是由于B 位点上的Pb 2+离子被 ZnBr 2提供的Zn 2+离子取代所致。此外,额外的 Br -离子的存在不仅促进了转变过程,而且抑制了 PNC 中的表面缺陷,导致 PL 量子产率高达 98.6%。通过实验表征技术研究了这种转变和光学性能增强背后的机制。时间分辨PL和瞬态吸收光谱揭示了非辐射载流子捕获中心的抑制和浅能态的产生,通过添加ZnBr 2促进辐射复合。此外,温度依赖性 PL 和 TRPL 研究表明,温度变化促进了辐射复合和去捕获。在高温下,ZnBr 2掺杂的PNCs表现出比CsPbBr 3更好的颜色稳定性,使其适合在发光器件中应用。最后,我们使用蓝色 LED、掺杂 Zn 的 CsPbBr 3 PNC 和 K 2 SiF 6 :Mn 4+开发了一种白光发光二极管 (WLED),它发出的白光具有令人印象深刻的特点:高发光效率WLED的亮度为58 lm W -1,显色指数为80.6,生成的色坐标为(0.3312, 0.3253),相关温度为5584 K。此外,WLED实现了宽色域,表现出NTSC的129.74%和96.88 BT-2020 的%。